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ABSTRACT 

 

Fish stock management worldwide is based on stock assessment models. The relative abundance index 

of the species of interest is one of the most critical inputs in most stock assessment models. The main 

problem in determining the abundance index occurs in a dependence survey, where the catchability 

covariates are highly influential on the species abundance index to cover the actual reality in nature. 
This study used the Vector Autoregressive Spatiotemporal Model (VAST) for blue shark species 

associated with Indonesian longline tuna fisheries in the Eastern Indian Ocean. The results indicated 

that the resulting abundance index was better with low residuals, excluded catchability, and included 

habitat covariates, making the results better than those of the conventional GLM model. The 

population density is well illustrated in the VAST model, where the VAST model can impute the 

population density in unfished areas to obtain a weighted area index. This is a distinct advantage, 

considering the many unfished areas in our research survey. This information is expected to benefit 

stakeholders in their decision making in the field. 

 

Keywords: Blue shark, Longline fisheries, Eastern Indian Ocean, Spatiotemporal, VAST Model, 

Indonesian tuna fisheries. 
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1 INTRODUCTION 

 

1.1  Indonesian tuna longline fishery 

 

Indonesia is one of the main participants in tuna fisheries in the Eastern Indian Ocean. The total 

landings in 2019 were 190,319 tons, accounting for 17.24% of the total tuna production in the 

Indian Ocean (CCSBT 2021; Fahmi et al. 2020; IOTC 2020). The target species are yellowfin 

(Thunnus albacares), bigeye (Thunnus obesus), albacore (Thunnus alalunga), skipjack 

(Katsuwonus pelamis), and southern bluefin tuna (Thunnus maccoyii). Vessels in Indonesian tuna 

fisheries use a variety of fishing gear, including gill nets, lines, longlines, and purse seines. In 2019, 

vessels using longlines landed 15,298 tons of tuna, corresponding to 8% of the total longline catch 

in the Indian Ocean (Fahmi et al., 2020). 

 

The Indonesian longline tuna fleet is primarily based at four ports in the Indian Ocean: Bungus 

(Sumatra), Palabuhanratu (West Java), Cilacap (Central Java), and Benoa (Bali), where vessels 

based at the port of Benoa contribute to more than 60% of longline tuna caught in the Eastern 

Indian Ocean (Rochman et al., 2016). In 2019, there were 283 vessels registered with the Indian 

Ocean Tuna Commission (IOTC), with gross tonnage (GT) ranging between 90 and 200 (Fahmi et 

al., 2020). The fishing grounds of the longline fleet in the Indian Ocean cover an extensive area, 

from 5°to 35°S latitude and 70°E to 125°E longitude. Landings of non-schooling tuna (bigeye tuna, 

yellowfin tuna, southern bluefin tuna, and albacore) are primarily destined for export in the form 

of fresh products. Approximately 77% of catches were carried out outside Indonesia's exclusive 

economic zone (Rochman, 2019; Setyadji et al., 2016).  

 

1.2 Blue shark associated with tuna longline fisheries 

 

A pelagic longline fishery targeting large tuna and billfish species typically has a high incidental 

catch of sharks that are landed in an incomplete form (fins and cutlets) (Clarke, Francis, & Griggs, 

2013) or discharged onboard (Campana, 2016; Jordaan, G. L., Santos, J. & Groeneveld, 2020). 

Characterising shark bycatch in tuna fisheries can be challenging because its capture is not included 

in the fisher's logbook. Therefore, their abundance, species composition, and fishing mortality are 

poorly understood (Jordaan G. L., Santos,. & Groeneveld, 2020) and are usually not included in 

population assessments. 

 

The blue shark (Prionace glauca) is closely associated with longline tuna fisheries and is captured 

as bycatch. The swimming depth of the blue shark ranges from 75 m to 600 m (Hideki, N. & 

Stevans, 2009) but is caught chiefly at surface depths and the thermocline area at  75 - 300 m 

(Barata, A., Novianto, D. & Bahtiar, 2012; Rochman et al., 2021). Previous research has shown 

that fishing strategy and selection of fishing areas by tuna fleets affect the number of blue sharks 

captured as bycatch. The use of deep longlines contributes significantly to the increase in the 

number of captured blue sharks. The abundance index for blue sharks showed that abundance was 

higher on the high seas between Indonesia and northwest Australia than the area around the 

Indonesian islands of Sumatra, Java, Bali, and Nusa Tenggara (Rochman, F., Wujdi, A., Arnenda, 

G. L. & Kurniawan, 2021).  
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In the North Pacific, the abundance of blue sharks is influenced by seasons, geographical regions, 

and fishing strategy (Hiraoka, Kanaiwa, Ohshimo, Takahashi, Kai, and Yokawa, 2016). The blue 

shark CPUE is higher during the spring and summer (April and June) and within an area between 

35°N and 45°N. Research on the abundance index of blue sharks in the Eastern Indian Ocean 

showed that the abundance index of blue sharks was high in high seas areas (>200 NM) close to 

northwest Australia (Rochman, F., Wujdi, A., Arnenda, G. L. & Kurniawan, 2021). The study 

found that the use of deep longlines significantly affected the increase in the abundance index.   

1.3 Blue Shark Status 

 

The Blue shark is the most abundant pelagic shark, and many are caught by world fisheries, 

primarily as bycatch in longlines and gill nets. Blue sharks are categorised as near-threatened 

version 3.1 by the International Union for Conservation of Nature (IUCN)  (Rigby et al., 2019). 

This species has the highest population growth rate among pelagic sharks and reaches sexual 

maturity at a relatively young age.  

 

Blue shark populations are closely related to commercial and small-scale pelagic longlines, purse 

seines, and gillnet fisheries. Only fins are generally utilised; however, more recently, meat has been 

widely used. The blue shark population decline was the highest in the North and South Atlantic 

waters, followed by the Indian Ocean, with a median population decline of 7.3% to 20% over the 

last 30 years. However, owing to the uncertainty in some regional forecast trends, experts estimate 

a population decline of 20–29% over three generations, and the blue shark is rated as near 

threatened (Rigby et al., 2019). 

 

Population trend estimates are available for the Atlantic, Pacific, and Indian Oceans (Rigby et al., 

2019). Although the assessment had some uncertainty, the North and South Atlantic regions 

estimated that the stock was unlikely to be overfished and was not subject to overfishing. The 

average population reduction rate ranges from 1.5-2.3% per year, with an estimated median 

reduction of 38.2-53% over three generations (30 years) (ICCAT, 2015). The Pacific Stock 

Assessment is considered a work in progress. Trend analysis of the Southwest Pacific spawning 

biomass for 1999-2014 (21 years) revealed an annual rate of increase of 0.2%, with a median of 

5.7% over three generations (31.5 years) (WCPFC, 2016). The Indian Ocean stock assessment 

showed that the stock was not overfished, but may be experiencing overfishing. The trend in 

biomass (1949-2020) (72 years) revealed an annual reduction of 8.4%–20% (maximum < 20%) 

(IOTC, 2020b). 

 

1.4 Blue shark biology 

 

The blue shark (Prionace glauca, Carcharhinidae) is a marine species found worldwide in 

temperate and tropical waters, characterised by a slender body, long pectoral fins, indigo blue back, 

metallic blue sides, and sudden white undersides. This species is a large species of up to 383 cm 

TL with an average length of 220 cm TL and a similar growth pattern between males and females. 

 

Age and growth studies of blue sharks in the North Pacific and South Atlantic have shown that 

50% of male blue sharks reach sexual maturity at 218 cm in length (total length), although some 

blue sharks can reach a lower maturity level of approximately 182 cm. Females appear to approach 
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a lower mean asymptotic maximum length and grow more rapidly than males (Hideki, N. & 

Stevans, 2009). The blue shark reproduction mode is placental viviparity with a gestation period 

of 9-12 months and an average production of 30 new individuals per year, where reproduction 

occurs in spring and summer and reaches sexual maturity after six years  (Hazin, F. H.V., Kihara, 

K., Otsuka, K., Boeckman, C. E. & Leal, 1994). 

 

The main prey of blue sharks is small pelagic fish and cephalopods, especially squids, pelagic 

crustaceans, small sharks, cetaceans, and sea birds (Henderson, A. C., Flannery, K. & Dunne, 

2001). Blue sharks are known to feed for 24 hours but are reported to be active at night and more 

active in the early evening.  

 

Blue sharks are widely distributed throughout tropical and temperate oceans, between 60ºN and 

50ºS. The blue shark is an oceanic species but can also be found close to the narrow continental 

shelf, usually around 150–1,000 m. Blue sharks prefer temperatures of 12–220 °C, and are found 

at greater depths in tropical waters. The general relative abundance is the lowest in equatorial 

waters and increases with latitude (Hideki, N. & Stevans, 2009).  

1.5 Standardization of abundance indices 

 

Data from fishery-dependent and fishery-independent sources are inputs for stock assessment 

models that provide the information needed for fisheries management (Methot Jr., R. D.,& Wetzel, 

2013). A fundamental requirement of these models is a relative abundance index that can provide 

information regarding trends in population size. In many cases, catch-per-unit-effort (CPUE) is 

used in stock assessment models as a relative abundance index, particularly when data comes from 

commercial fisheries (Francis, 2011). In longline fisheries, the CPUE is usually expressed as the 

number or weight of fish caught per hook. 

The use of CPUE as a relative abundance index assumes a constant and proportional relationship 

between CPUE and density of the target species (Maunder, M. N. & Punt, 2004). Nevertheless, the 

relationship between CPUE and density may not be constant and may change in space and time 

because of differences in vessel power, fishing strategy, environmental conditions, and other 

factors.   This effect is substantial, especially in fishery-dependent data because vessel skippers 

know the target species well and can identify areas of high abundance. In this situation, the 

standardised abundance index values do not adequately reflect the actual abundance of the target 

species. Therefore, raw CPUE values cannot be used directly as indices of abundance, and they 

need to be standardised to account (at least partially) for these factors. A well-standardized CPUE 

value is expected to be proportional to the population abundance value (Maunder, 2001; Rochman, 

F., Setyadji, B. & Wujdi, 2017; Sadiyah, L., Dowling, N. & Prisantoso, 2012).  

 

Several approaches have been used to standardise the CPUE values (Maunder and Punt, 2004). The 

most common approach is to use generalised linear models (GLMs). However, other methods exist, 

including generalised additive models (GAMs) and generalised linear mixed models (GLMMs).   

Recently, standardisation using Vector Autoregressive Spatiotemporal (VAST) models has been 

proposed as an alternative approach. VAST is a spatiotemporal model that can explicitly account 

for changes in population densities over time and at multiple locations (Thorson, J. T. & Barnett, 

2017; Xu, H., Lennert-Cody, C. E., Maunder, M. N., Minte-Vera, 2019). 
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1.6 Objective 

 

This study aimed to model the abundance index of blue sharks in the Indonesian longline tuna 

fishery using a VAST model and perform a comparative analysis with the nominal index and 

standardised index using GLM. 

 . 
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2 MATERIALS AND METHODS 

 

The CPUE dataset was aggregated by year and month with a spatial resolution of 1°×1° and covered 

the Eastern Indian Ocean between 0 and 35°S and 75 – 125°E from 2006 to 2018. CPUE was 

defined as the catch of blue sharks in a number of fish per 100 hooks, with a spatial CPUE value 

of 1,542 observations. 

 

2.1 Data Collection 

 

This study used fishery-dependent data from the Indonesian tuna longline fishery collected by the 

Research Institute for Tuna Fisheries (RITF) scientific onboard observer program. The data include 

tuna longline fishing operations in the Eastern Indian Ocean, both in Indonesian and international 

waters (high seas) between Australia and Indonesia. The locations of the catches ranged from to 0-

35°S to and 70-135°E. 

 

The data for this study consisted of 2,951 longline sets deployed during the period 2006-2018. The 

information from each set included vessel (trip), operational (setting and hauling), time, 

coordinates, species, size (length or weight), catch number, catch per unit effort, depth of catch, 

fishing strategy, and environmental data. Catch per unit of effort (CPUE) was calculated using the 

number of fish per 100 hooks (Rochman, F., Setyadji, B. & Wujdi, 2017).  

2.2 Nominal index and standardized index using GLM 

 

Nominal CPUE, also called raw CPUE, is simply the total catch divided by an observable measure 

of effort (Maunder, Sibert, Fonteneau, Hampton, Kleiber & Harley, 2006). In this study, the CPUE 

was computed as the number of fish per 100 hooks. In studies using CPUE as an abundance index,  

this is referred to as nominal index (I nominal):   𝐼𝑛𝑜𝑚𝑖𝑛𝑎𝑙 =
∑ 𝐶𝑖(𝑡)𝑖=1

∑ 𝐸𝑖(𝑡)𝑖=1

                                                    (1) 

Where I is the index, Ci is the number of catches at time t and Ei is the effort at time t. The nominal 

index does not account for any factor that influences the relationship between CPUE and abundance 

(e.g. fishing strategy and environmental covariates).       

Most methods used to standardise CPUE data estimate the annual effect on the catch on which an 

abundance index can be based (Maunder & Punt, 2004). The most common method uses 

generalised linear models (GLM) to identify trends in the abundance of target species by adjusting 

for confounding effects of other covariates. Here, we use GLMs to standardise the CPUE. The 

CPUE dataset was aggregated by year and month, with a spatial resolution of 1°×1° and covered 

the Eastern Indian Ocean. The GLM model applied to the data is as follows: 

C(𝑠, 𝑡) = ~𝑌𝑒𝑎𝑟(𝑡) + 𝑐𝑒𝑙𝑙(𝑠) + ∑ 𝛾𝑗𝑥𝑗(𝑠, 𝑡) +
𝑛𝑗
𝑗=1 ∑ 𝜆(𝑘)𝑄(𝑘) + log (sett(s, t)𝑛𝑘

𝑘=1  (2) 

 

Where C(s,t) is the prediction of blue shark catch (in numbers) in cell s and year t, year (t) is the 

fixed effect for each year t, cell(s) is the fixed effect for each cell s, γj represents the effect of 

covariate j (i.e. the linear impact of SST, nj=1) with value xj(s,t) on the catch for cell s, and Year t, 
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𝜆k is the coefficient for catchability covariate Q(k) (i.e. fleet, nk = 1), and sett is the fishing effort 

(setting) as a log offset in cell s and Year t . The results of this analysis will be used as a baseline 

to compare the outputs of the VAST model described next. 

 

GLMs include several variables that affect the number of fish caught in each longline. The 

covariates included in the analysis were year, quarter, season, month, longline type, vessel, fish 

depth, sea surface temperature, chlorophyll, sea depth, and distance to the 1000 m isobath. A 

preliminary evaluation was carried out using ANOVA, and CPUE modelling was the effect of these 

covariates. Only covariates that significantly affected CPUE (chi-square <0.05) were included in 

the GLM.   

 

GLMs were built using a Tweedie distribution and log-link function. Tweedie distributions are a 

family of probability distributions whose shape is defined by a power parameter, k. The Tweedie 

distributions include several well-known distributions, including normal (k=0), Poisson (k=1), 

gamma (k=2), and inverse Gaussian (k=3) distributions. K between 1 and 2 defines a compound 

Poisson-gamma distribution  (Rochman, F., Setyadji, B. & Wujdi, 2017; Rochman, F., Wujdi, A., 

Arnenda, G. L. & Kurniawan, 2021; Sadiyah, L., Dowling, N. & Prisantoso, 2012).   The Tweedie 

distribution is applicable to catch data that is not normal (negative skewness) with zero catch data, 

as in the case of blue sharks caught in the longline tuna fishery.   To select the optimal value for 

the power parameter, a maximum likelihood estimation was performed, testing values for k 

between 1 and 2. A GLM was fitted with the selected parameters to a set of candidate models with 

standard quantile selection (residual, QQ plot, and residual histogram). The selection of the GLM 

index model was based on the Akaike Information Criterion (AIC) using the "statmod" (Giner and 

Smyth, 2016) and "Tweedie" (Dunn, 2021) packages in the R statistical software (R-Development-

Core-Team, 2021). Model evaluation was performed by examining diagnostic plots. The model 

with the smallest AIC value was chosen as a reference and was expected to provide an optimal 

value for the final model. 

 

2.3 Standardised index using VAST (Vector-Autoregressive Spatio-Temporal) model 

In recent years, more advanced methods have been developed to standardise CPUE using spatio-

temporal models that can provide more precise estimates of abundance because they account for 

spatial and temporal correlation, which is the trend that CPUE observations that occur closer in 

space and time are more likely to be similar. This study used the Vector-Autoregressive Spatio-

Temporal (VAST) model. We used the R package, VAST (https://github.com/James-Thorson-

NOAA/VAST)  (Thorson, 2019). VAST uses a Gaussian random field to model the auto-spatial 

correlation with anisotropy (i.e. the autocorrelation relationship at velocity is not the same in all 

directions) and an interactive relationship between space and time (i.e. spatiotemporal correlation). 

Gaussian random fields were defined using the Matern covariance function (Thorson, 2019).  

VAST is a delta-generalised linear mixed model, where the distribution of the catch data is 

decomposed into two components: a) the probability of encounter (binomial model) and b) the 

expected catch rate given that the species is encountered. The predicted logarithm of the blue shark 

abundance p(s,t) in knots s and year t, is predicted as follows: 
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𝑝(𝑠, 𝑡) = 𝛽(𝑡) + 𝜔(𝑠) + 𝜀(𝑠, 𝑡) + ∑ 𝛾𝑗𝑥𝑗(𝑠, 𝑡) + ∑ 𝜆(𝑘)𝑄(𝑘)𝑛𝑘
𝑘=1

𝑛𝑗
𝑗=1   

 

where, 𝛽(𝑡) is the intercept for each year t as a fixed effect, 𝜔(𝑠) is the time-invariant spatial 

autocorrelated variation for knot s, and 𝜀(𝑠, 𝑡) is a time-varying spatial-temporal autocorrelated 

variation for knot s and in Year t.  𝛾𝑗 represents the impact of covariate j with value xj(s,t) on 

density for knot s and year t, and 𝜆 is the coefficient for the catchability covariates 𝑄(𝑘) (i.e., fleet, 

nk=1). 

 

VAST requires the definition of a network of points or knots, where the correlation between spatial 

and spatiotemporal effects is estimated. Each observation in the dataset was then connected to the 

closest node using k-means clustering. In this study, we used a total of 3480 nodes (Figure 1, upper 

two figures), based on a regular grid with an input of 500 knots (Figure 1, red dots) and a resolution 

of 50 km, bounded by a concave hull surrounding the locations of the longlines in the data (Figure 

1).  

Two VAST models were fitted. The first model modelled the blue shark abundance only as a 

function of space and time, with no covariates. The second model included fish depth, sea surface 

temperature, chlorophyll, sea depth, and distance to the 1000 m isobath as covariates.  

 

Residual histograms were used to assess the normality of GLM and VAST and quantile-quantile 

normal probability plots (Normal Q-Q plots) for both. 

(3) 
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Figure 1. A grid comprising 3480 nodes marks the spatial coverage of the data and the surrounding 

bounds (upper figures) that were used to fit the VAST models. Five hundred knots were specified, 

which the model places geographically to minimise the distance between the data and knots over 

the study area (lower figure).  
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3 RESULTS 

 

3.1 Distribution of fishing effort 

 

The overall distribution of longlines sampled by the Indonesian Scientific Observer Program is 

shown in Figure 2. The fishing areas included the Eastern Indian Ocean, West of Sumatra, South 

of Java-Bali-Nusa Tenggara, Northwest-West Australia, and the Banda Sea.  

 
Figure 2. The study area of the Indonesian tuna longlines scientific observer program in the Eastern 

Indian Ocean 2006-2018. 

The spatial distribution of longlines varies throughout the year (Figure 3). During the first quarter 

(January–March), the dominant fishing grounds were near the west coast of Sumatra, Southern 

Java-Bali-Nusa Tenggara, and parts of the Banda Sea (0-15°S and 90-130°E). However, some 

fishing locations were far from the coast, off Western Australia (15-35°S and 75-110°E). In the 

second quarter (April–June), the main fishing grounds were in the waters between South Java-Bali-

Nusa Tenggara and the waters around Northwest Australia (5-25°S and 95-125°E), with a small 

number of fishing locations in the high seas off Western Australia (20-35°S and 80-90°E). During 

the third quarter (July–September), fishing grounds showed similarities with quarter two, but 

fishing locations off Western Australia were farther north and more widespread (15-30°S and 75-

110°E). The fishing locations were widely and evenly distributed in the fourth quarter (October–

December), with locations south of Java-Bali-Nusa Tenggara, Northwest Australia, Western 

Australia, and the high seas. 
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Figure 3. The geographic distribution of the study area, aggregated for 2006-2018 by quarter (1. 

January-March, 2. April-June, 3. July-September, 4. October-December). 

In general, fishing efforts ranged from 500 to 2,500 hooks per set, with most sets between 1,000-

1,500 hooks per set (Figure 4). However, the effort was greater in fishing areas far from the 

Indonesian coastline. The effort was higher (~1500-2500 hooks per set) in sets by the deep-sea tuna 

longline fishing off Western Australia (15-30°S and 75-110°E). Examination of the quarterly 

distribution shows that fishing effort was higher in the high seas area than in areas closer to the 

shoreline, especially off Northwest and Western Australia (10-30°S and 75-110°E) (Figure 5). 

 

 

 



              

                     Rochman 

GRÓ Fisheries Training Programme under the auspices of UNESCO                                          11 

 

 

Figure 4. Spatial distribution of fishing effort defined as the mean number of hooks used per set 

per 1°x1° grid cell from 2006 to 2018. 

 

 

Figure 5. Spatial distribution of fishing effort by quarter year, 2006-2018. Effort is defined as the 

mean number of hooks per set per 1° × 1°. 
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3.2 Nominal index and generalized linear model (GLM) index 

 

The nominal abundance index and the index standardised using generalised linear models were 

computed as a time-series dataset, that is, they did not explicitly consider the spatial location of the 

catches. 

As a preliminary analysis before estimating the standardised GLM index, we determined the 

significance of several covariates that affect blue shark catches using analysis of variance 

(ANOVA; Chi-Square). (Table 1). The results indicated that variables related to catch time (year, 

quarter, season, and month) and technical characteristics, Trip_id, which identifies individual 

vessels and the type of longline, were strongly significant. In addition, the depth of fishing and 

distance to the 1000m isobath were marginally significant. 

A series of GLM models were built using strongly significant covariates, marked with gray in Table 

1. The first three models were used as predictor years, and one of the covariates indicating the time 

of year (quarter, season, and month). Models were compared using AIC values, with year and 

month having the lowest AIC (Model 3). Next, we fitted three additional models, expanding Model 

3 with permutations of Trip_id and longline type. The best model was Model 5, which included 

year, month, and Trip_id as the predictors. Diagnostic plots, including randomised quantile 

residuals, QQ Plots, and the distribution of quantile residuals, are shown in Figure 6.  

Table 1. Summary of the significant covariates in GLM fitted from the dataset (2006-2018). 

 

  

Df Deviance Resid. Df Resid. Dev Pr(>Chi) sig.

NULL 1888 66.796

Year 12 28.8387 1876 37.957 <2.2e-16 ***

Quarter 3 5.5787 1873 32.378 <2.2e-16 ***

Season 1 0.2612 1872 32.117 4.31E-10 ***

Month 7 0.6618 1865 31.455 <2.2e-16 ***

Type_LL 2 0.2342 1863 31.221 2.59E-08 ***

Trip_id 65 21.3687 1798 9.853 <2.2e-16 ***

Depth_fish 1 0.0262 1797 9.826 0.04816 *

sst 1 0.0024 1796 9.824 0.55225

chl 1 0.0119 1795 9.812 0.18187

depth 1 0.0046 1794 9.807 0.40903

dist1000 1 0.033 1793 9.774 0.02653 *

Signif. Codes 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’

0.05 ‘.’ 0.1 ‘ ’ 1

Covariates included in GLM model with smallest AIC
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Table 2. List of model option GLM standardized index according to AIC value 

 

 

 

Figure 6. Residual plot of GLM standardised index of blue shark associated with tuna longline 

fisheries in the Eastern Indian Ocean. 

The covariate effect was included in the standardised GLM index by comparing it to the nominal 

index. During the study period (2006-2018), the average nominal index of blue shark abundance 

was 0.767. A minimum abundance index of 0.0595 was achieved in 2012, with a maximum of 

0.09375 in 2011 (Figure 7).  

 

No Model Options AIC

1 CPUE~Year+Quarter -12,442

2 CPUE~Year+Season -12,109

3 CPUE~Year+Month -12,503

4 Model 3+ Type_LL -12,519

5 Model 3+ Trip_id -14,845

6 Model 3+ Type_LL+ Trip_id -14,842
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Figure 7. Nominal and GLM standardised abundance index of blue shark associated with tuna 

longline fisheries in the Eastern Indian Ocean (2006-2018). 

 

3.3 The VAST model standardised index 

 

Preliminary research evaluated the VAST model by examining the resulting, observational, and 

predictive residuals. We used the non-covariate model as a reference material to develop the next 

VAST model (Figure 9). The VAST model without covariates showed that the observed and 

expected values were positively related to the normal distribution of the residuals, indicating that 

the VAST model could be used to assess the abundance index. 

In addition, we also ran the VAST model, including depth of fish, sea surface temperature (sst), 

chlorophyll concentration (chl-a), bottom depth, and distance to a 1000 m isobath as habitat 

explanatory covariates, resulting in an excellent fit (Figure 10). The abundance index of the VAST 

model with and without covariates is shown in Figure 8. The predicted density values of the VAST 

model are presented in Figure 11 and 12. 
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Figure 8. The abundance index of blue sharks associated with tuna longline fisheries using the 

VAST model with and without habitat covariates. 

 

 

Figure 9. Plot of the residual model of VAST without covariates for blue sharks associated with 

longline tuna fisheries in the Eastern Indian Ocean. 



              

                     Rochman 

GRÓ Fisheries Training Programme under the auspices of UNESCO                                          16 

 

 

 

Figure 10. Plot of the residual model of VAST with habitat covariates for blue sharks associated 

with longline tuna fisheries in the Eastern Indian Ocean.
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Figure 11. Spatiotemporal distribution of predicted log density of blue sharks associated with tuna longline in the Eastern Indian Ocean 2006-2018 using 

the VAST model without covariates (dark green: high density, yellow: low density). 
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Figure 12. Spatiotemporal distribution of predicted log density of blue sharks associated with tuna longline in the Eastern Indian Ocean 2006-2018 using 

the VAST model with environmental variables as covariates (dark green: high density, yellow: low density). 
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At this initial stage, it was concluded that the VAST model could be implemented in the 2006-2018 

onboard observer program data. The residual graph indicates an excellent fit between the 

observations and predictions. The results showed that the addition of habitat covariates to the model 

produced a smoother index. 

 

3.4 Comparison between nominal, GLM, and VAST indices 

 

To make a comparative analysis between the nominal, GLM standardised index, and VAST 

models, we must know each model's diagnostic quantile residual value. Quantile residual 

diagnostics suggested that the VAST spatiotemporal model has a good fit for the number of catch 

and effort data in the longline tuna fisheries dataset (Figure 10). Meanwhile, the quantile residuals 

for the standardised GLM model indicated underestimation at the beginning and overestimation at 

the end of the study period (Figure 6). The VAST model appears to be a better reference than the 

conventional GLM model. 

For comparison, we used four models, namely the nominal index, GLM index, VAST index 

without covariates, and VAST index with a combination of five habitat covariates (depth of fish, 

sea surface temperature, bottom depth, chlorophyll-a, and distance at 1000 m isobath). 

Considerable variation was observed in the abundance indices from 2006 to 2018 (Figure 13). 

These results show a similar pattern between the GLM, VAST, and nominal indices. The GLM and 

VAST indices increase in 2006-2007 and decreased until 2011. Then there was an increase from 

2011-to 2018. We did not find fluctuations in the nominal abundance index, which tended to be 

flat with a scaled index between 0.75 and 1.25. However, using the GLM index, we found an 

unusual pattern, especially in 2011, which had a significant increase in the index, but was 

profoundly corrected in 2012. We did not find this pattern in two of the VAST indices. 
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Figure 13. Comparison of three scaled relative abundance indexes of blue shark associated with 

the tuna longline fisheries in the Eastern Indian Ocean 

 

Other advantages were obtained from the VAST spatiotemporal model compared to the 

conventional GLM model. The VAST model can estimate the population density for the species at 

multiple locations and times, explicitly including associations with environmental variables and 

changes in space and time. The VAST model is a state-space model that incorporates variability 

and measurement error in the fisheries model but is further expanded to consider geographical 

aspects. Geographically, there is a tendency for the calculation error process to occur in locations 

that are close together compared with locations that are very far away. This function is called the 

"common currency" model, which brings together different stock, ecosystem, and climate 

assessment approaches (Thorson, 2019). 

The predicted density of the blue shark population using the VAST model by year is presented in 

Figure 11, and the quarterly data are presented in Figure 12. The blue shark population density 

trend varies annually and undergoes several changes. From the log density population generated 

by the VAST model, several areas have a very high level of population density compared to other 

areas, especially the area around the southern coast of the island of Bali-Nusa-Tenggara, the Banda 

Sea, and the high seas area West of Australia at latitudes of 75 °–100°E. From the prediction of 

population density using the VAST model, it was found that the general population trend increased 

from 2006 to 2014; moreover, there was a slight decrease in population density from 2015 to 2018 

during the research survey process. 
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4. DISCUSSION 

 

4.1 The advantage of the VAST model index 

 

The VAST spatiotemporal model successfully fit 24,483 catch and effort data on blue sharks 

associated with Indonesian longline tuna fisheries in the Eastern Indian Ocean. The conclusions of 

this study are as follows. 

• The diagnostic quantile residual obtained from the VAST model was better than that 

obtained from the GLM model, with a low residual level between the observed and 

predicted values. This proves that the VAST model is feasible and can be developed for 

fisheries modelling and stock assessment. We also found good residual levels in previous 

studies using the VAST model, including research on yellowfin tuna in purse seine fisheries 

in the Eastern Pacific Ocean 1975-2016 (Xu, H., Lennert-Cody, C. E., Maunder, M. N., 

Minte-Vera, 2019), pacific blue marlin in Taiwan tuna longline fisheries in the Pacific 

Ocean 1971-2019 (Hsu, J. & Chang, 2020) and the on-going investigation of Japanese 

longline CPUE of yellowfin tuna in the Indian Ocean 1975-2020 (Satoh, K., Matsumoto, 

T., Yokoi, H. & Kitakado, 2021). The conventional GLM index includes catchability 

covariates in the model, such as fishing strategy, and operational variables such as time, 

type of longline, hook between float, the vessel, which are positively correlated with the 

catch rate and the resulting index of abundance. This result was an underestimated value at 

the beginning and an overestimation at the end of the study period, as shown in the 

diagnostic quantile residual (Figure 6). Underestimation and overestimation of residual 

conditions have also been found in previous studies on swordfish fisheries using tuna 

longline fishing gear in Hawaii (Sculley & Brodziak, 2020). This study shows that replacing 

the conventional GLM model with the VAST model can increase the value of the log-

likelihood of the assessment model, which is consistent with other inputs in the model, 

similar to the yellowfin tuna study in the Eastern Pacific Ocean (Xu, H., Lennert-Cody, C. 

E., Maunder, M. N., Minte-Vera, 2019).  

• The VAST model predicted density and both spatial and temporal variations across the 

fishing area in the Eastern Indian Ocean. The predicted log density in the VAST model uses 

habitat preferences to spatiotemporally calculate population density. Meanwhile, 

catchability preference is not used in model fitting, so that the index and population density 

generated by the VAST model are pure without underestimating or overestimating 

residuals. The VAST model automatically predicts unfished areas not included in the survey 

via imputation and implements an area-weighting scheme by referring to the nearest node. 

In addition, the VAST model can predict population density based on habitat covariates and 

the accompanying spatiotemporal random effect. Furthermore, these covariates provide the 

random effect value in the VAST model. The VAST model can substantially improve 

population density predictions by conditioning the model based on a previously known 

residual pattern using geostatistical methods using kriging (Thorson, 2019).  
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• The VAST model's abundance index does not have an initial underestimation or 

overestimation at the end and has less noise due to catchability covariates. This study is 

crucial for identifying the best methods for estimating the abundance of fish resources 

correctly and precisely, without bias due to catchability factors, fishing tactics, fishing 

strategy, and technology. The assessment of fish stocks can be performed accurately and 

reliably. 

 

4.2 Application of the VAST model in Indonesia tuna longline fisheries  

 

The Indonesian longline tuna fishery, operating in the Eastern Indian Ocean, has experienced ups 

and downs in the last decade. Political issues, economics, and the availability of fishery resources 

always accompany the fishery business. In 2014 and 2015, there were government policies to tackle 

IUU (illegal, unregulated, and unreported) fishing in Indonesia by prohibiting foreign fishing 

vessels from operating in Indonesia, resulting in a massive reduction in the number of ships 

operating and landing at Indonesian ports (Rochman, F., Setyadji, B. & Jatmiko, 2016). In recent 

years, the number of longline tuna fleets registered with the Indian Ocean Tuna Commission 

(IOTC) has ranged from 217 to 283 units in 2016-2021 from the previous 1,227 to 1,282 units in 

2012-2015 (MMAF Indonesia, 2021).  

Fuel prices are an economic issue that is closely related to longline tuna fisheries. The fuel prices 

increase the longline tuna fishery's production and operational costs, especially if the operating 

area is far from the coastline and high seas area. A sharp increase in fuel prices occurred in 2005, 

which caused the largest tuna fishing company in Indonesia, namely Perikanan Samudera Besar 

Ltd., to collapse (Rochman & Nugraha, 2014).  

The issue of fishery resources occurred because of a decrease in CPUE and stocks of essential tuna 

commodities in the Indian Ocean, such as a decrease in yellowfin tuna stock (IOTC, 2021) which 

resulted in the displacement of fishing gear from longline tuna to other fishing gear, particularly 

purse seines. However, this has resulted in the emergence of another issue, where the purse seine 

fishery uses a fish aggregating device (FAD) which is not friendly to small tuna and interferes with 

the tuna migration process (Rochman, Jatmiko, & Fahmi, 2019). 

Research on longline tuna fisheries in the Eastern Indian Ocean in the 2006-2018 period was 

conducted by participating in tuna longline fishing activities in several fishing ports in Sumatra, 

Java, Bali, and Nusa Tenggara. The weakness of the dependent survey is that it cannot determine 

the research area and departure time by itself, so the results of the study contain unfished areas (un-

surveyed) and some empty observation times. The use of fishing strategy and technology 

(catchability) by fishing masters has proliferated over the past decade. An increase in catch could 

offset the decline in abundance index. Therefore, the abundance index tends to be biased and cannot 

correctly describe the actual fishery conditions.  

The VAST model can answer all these problems well by reducing bias and error by excluding 

catchability covariates and including only habitat covariates as model predictors. In addition, the 

system contained in the VAST model allows for a weighting area for unfished areas with various 

accompanying systems (Thorson, 2019). The VAST model generated extrapolated density logs or 

density populations in our traditional fishing grounds in the Eastern Indian Ocean annually and 
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quarterly. It is hoped that the modelling results using the VAST model can be used as a reference 

for making decisions regarding the management of tuna longline fisheries in Indonesia and 

simultaneously provide valuable information and inputs for longliners in the context of effective 

and efficient fishing operations. 

 

5. CONCLUSION AND FUTURE RESEARCH 

 

The spatiotemporal VAST model provides a better abundance index than previous nominal and 

conventional GLM indices. The VAST model can estimate the population density of species in 

fishing areas annually and quarterly and has a suitable mechanism for population weighting, 

especially in areas that are not surveyed or unfished. This is compatible with the results of 

dependent survey research. In the future, we will refine the research results by filling the unfished 

area with research surveys and implementing them for target species in the longline tuna fishery. 
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