

GEOTHERMAL EXPLORATION IN RWANDA: STATUS REPORT

Uwera Rutagarama

Energy Development Corporation Limited Kigali RWANDA urutagarama@edcl.reg.rw

ABSTRACT

The Government of Rwanda envisions transitioning from a developing country to a to a high-income country by 2050. To achieve this goal, the government is targeting 100% electricity access by 2024. Rwanda has limited indigenous fossil fuels and its hydro resources are almost fully developed. To resolve the increasing demand of electricity and diversify its energy resources, the Government has put its focus in developing the existing potential energy sources from peat, solar, shared hydro sites and methane gas from Lake Kivu. The current installed generation capacity is 386.9 MW with 74.4% electricity access of which 54.19% connected to the national grid and 20.21% accessing through off-grid systems (mainly solar standalone systems).

When looking at available options for energy, geothermal energy appears an option, given that the resource is proven. This paper outlines the background and status of geothermal exploration in Rwanda.

1. INTRODUCTION

In Rwanda, biomass dominates as the principal source of primary energy for 76.1% of the population followed by imported petroleum fuels dominating the local industries energy supply. In the third level is electricity with an access of 74.4% of the population with 54.19 % on grid and 20.21% off grid.

The vision for Rwanda's energy sector is established in the Energy Sector Strategic Plan (ESSP) and the National Energy Policy. These documents recognize the crucial role of electricity access in accelerating economic development, as well as improving health outcomes and standards of living for people in Rwanda. The target for electricity access by 2024 is for 100% of households to have access to electricity to be met through a combination of on-grid and off-grid supply. A rural electrification strategy and National Electrification Plan have been developed to spread the electricity network across the country.

The Government of Rwanda (GoR) plans to achieve by 2024 an energy capacity of 556 MW to be generated from a sustainable generation mix of hydropower, methane gas, peat and solar. The current total installed generation capacity available in Rwanda is 386.9 MWe. The cost of electricity is relatively high with a tariff varying from US\$ 9 to 22 cents/kWh for residential customers and US\$ 9 to 13 cents/kWh for industrial consumers. Therefore, in order to minimize the dependency on energy imports and create conditions for the provision of safe, reliable, efficient, cost-effective, and environmentally appropriate source of energy, renewable energy resources including geothermal seems to be the long-term solution that could end the energy crisis.

The development of geothermal energy resources in Rwanda is still at early stages compared to some East African countries such as Kenya and Ethiopia. The exploration of this resource really boomed in 2006 with a view of diversifying energy sources for electricity generation and meets the electricity demand in the country. The volcanoes area, the geological context and the hydrothermal manifestations of Rwanda are an indication of the possible existence of potential geothermal systems. Early geothermal investigations (Egbert et al., 2009; Mariita et al., 2010) pointed out the north-west area as a potential for large, high temperature geothermal systems, while the rift in the south-west part of the country along the Lake Kivu is believed to present an environment for low to moderate temperature resources (Demange et al., 1983; Newell et al., 2006) but these predictions were revaluated in light of the exploration drilling results of the Karisimbi prospect in the Northern part of the country in 2013.

The current strategy of the GoR is to assess the available geothermal potential within the country to fulfil its energy demand for electricity generation or direct applications. This involves a comprehensive analysis of past exploration efforts, identifying gaps, conducting thorough surface exploration across all potential sites using appropriate methodologies to rank them and ultimately proceeding with exploration drilling to validate the existence of the resource.

2. BACKGROUND ON GEOTHERMAL EXPLORATION

Rwanda is located along the Western branch of the Great Rift Valley. The geothermal potential was estimated at 170-340 MW by the Geothermal Energy Association in 1999 (GEA, 1999) and recently this estimation was revised down to 90 MW by the Japan International Cooperation Agency in 2015 (JICA, 2015). Geothermal investigations in Rwanda started in the 1980's and the existence of geothermal resources in the identified geothermal prospects is still to be confirmed. Several reports exist, indicating two areas as prospective zones for geothermal energy; the first zone (Gisenyi, Karisimbi, and Kinigi) in the north-western region associated with volcanoes and the second zone (Bugarama) in the southern region associated with faults in the East African Rift (Figure 1).

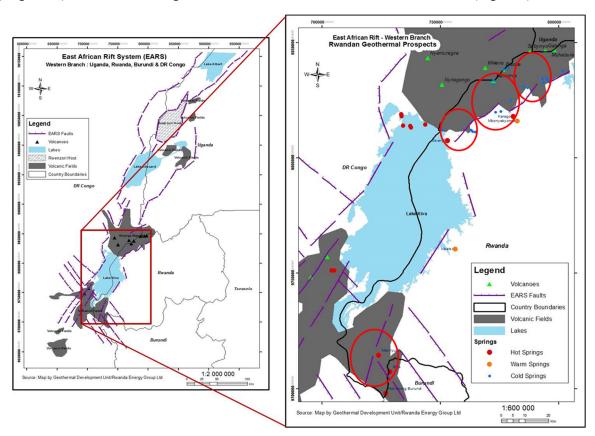


FIGURE 1: Location of Rwanda geothermal prospects (GDU, 2014)

In 1983, the French Bureau of Geology and Mines (BRGM) identified Gisenyi and Bugarama as potential sites for geothermal energy with estimated reservoir temperatures of over 100°C (Demange et al., 1983).

In 2006, Chevron carried out geochemistry studies in the Bugarama and Gisenyi geothermal prospects and estimated the geothermal reservoir temperatures to be more than 150°C (Newell et al., 2006).

In 2008, the Germany Institute for Geosciences and Natural Resources (BGR), in collaboration with the Kenya Electricity Generating Company (KenGen), the Icelandic Geo Survey (ISOR) and the Spanish Institute for Technology and Renewable Energies (ITER) carried out surface studies in the Gisenyi, Karisimbi and Kinigi areas. The results from this study concluded that a high temperature geothermal system (>200°C) may exist on the southern slopes of Karisimbi volcano and that a medium temperature geothermal system may exist around Lake Karago (150-200°C) (Egbert et al., 2009).

In 2009, KenGen acquired additional surface studies (geochemistry and geophysics) and carried out baseline environmental impact assessment (EIA) on the southern slopes of the Karisimbi Volcano. Findings recommended drilling three exploration wells in the Karisimbi prospect (Mariita et al., 2010).

In 2011, an additional geothermal survey was done by the Institute of Earth Science and Engineering (IESE) through Auckland UniServices, New Zealand aiming at developing a conceptual model for the entire western region and locating sites for exploration drilling in the three prospects, Karisimbi, Kinigi and Gisenyi (Shalev et al., 2012).

Workshops were organised in 2012 and 2013 with panel of experts aiming at merging all findings to come up with one unified conceptual model for the Karisimbi area allowing for the definition of the location of sites for exploration drilling in Karisimbi (EWSA, 2012; EWSA, 2013).

In 2013-2014, two exploration wells were drilled in the southern slopes of the Karisimbi volcano to 3,015 and 1,367 m depth, respectively. Alteration mineralogy and measured temperatures in the two wells are consistent with normal continental geothermal gradient (i.e. ~30°C/km) conclusively demonstrating that there is not an economically viable geothermal reservoir under the southern slopes of Karisimbi. Nevertheless, the temperature profiles of 3 April 2014, indicated a clear contrast between the almost nil temperature gradient in the lava rocks down to 1000 m depth and a temperature gradient of about 50°C /km in the basement granitic rocks below.

Presently, the four geothermal prospects can be ranked as shown in Table 1.

Geothermal prospects Reconnaissance **Detailed** Gradient Wells Wells drilled study survey wells sited Karisimbi yes no yes yes yes Kinigi yes (1)* yes no no yes Gisenyi yes (1)* yes yes no no Bugarama yes yes no yes no

TABLE 1: Exploration status for Rwanda prospect (Rutagarama, 2015)

3. CURRENT STATUS OF GEOTHERMAL DEVELOPMENT

3.1 Karisimbi geothermal prospect

The Karisimbi area is located near the Karisimbi volcano within the National Volcano Park and Virunga volcanic chain complex. No geothermal manifestations have been reported in this area. Couple of hot

^{*:} From (Shalev et al., 2012) but needs to be revised

springs are located south and out of the volcanic field with the highest temperature of 64°C at Karago (Figure 2). Detailed surface geo-scientific studies have been completed and two exploration wells were drilled.

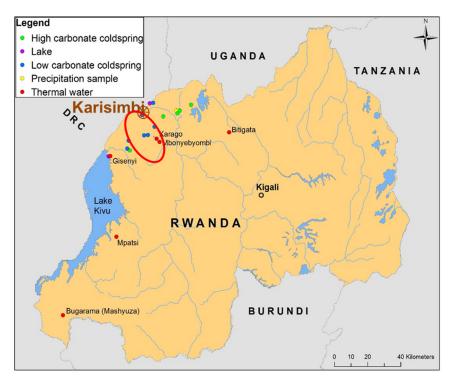


FIGURE 2: Location of Karisimbi geothermal prospect (Fridriksson et al., 2014)

Drilling of three deep exploratory wells was planned and funded by the GoR but only two wells (KW01 and KW03 in Figure 3) were drilled. The drilling contractor was Great Wall Drilling Company (GWDC). Drilling materials were supplied by the China Petroleum Development and Technology Corporation (CPTDC). The rehabilitation of the road to the drilling site was carried out by a local company ERGECO and the contract for water supply system to the site and civil works was awarded to a Kenyan Company, YASHINOYA Trading and Construction Company Limited.

Well testing services were provided by the Geothermal Development Company (GDC) from Kenya. Technical assistance prior to drilling was provided to the Geothermal Development Unit by JICA. On job training was provided by the Icelandic Geological Survey (ISOR) through funding from the Icelandic International Development Agency (ICEIDA). The drilling supervision for the first well was carried out by Reykjavik Geothermal Company (RG) and funded by the Nordic Fund through the Nordic Environment Finance Corporation (NEFCO) while the drilling management and geology supervision of the second well was provided by Geothermal Resources Group (GRG) in collaboration with GDC as drilling supervisor.

Exploration drilling started at the Karisimbi prospect in July 2013 with the first well KW01 to a depth of 3,015 m followed by the second well KW03 in December 2013 to a depth of 1,367 m. From the findings of nature of the underground geological formation and well testing from the two wells, it was observed that there was no evidence of a geothermal system in the Karisimbi area. This led to the decision of terminating the drilling activities in March 2014 in order to review the data and the exploration strategy.

The existing geo-scientific data and drilling data were reviewed by ISOR, the United Nations Environment Programme-African Rift Geothermal Development Facility (UNEP-ARGeo) and JICA. The outcome of this analysis was the basis for the elaboration of a new strategy for Rwanda geothermal exploration and development.

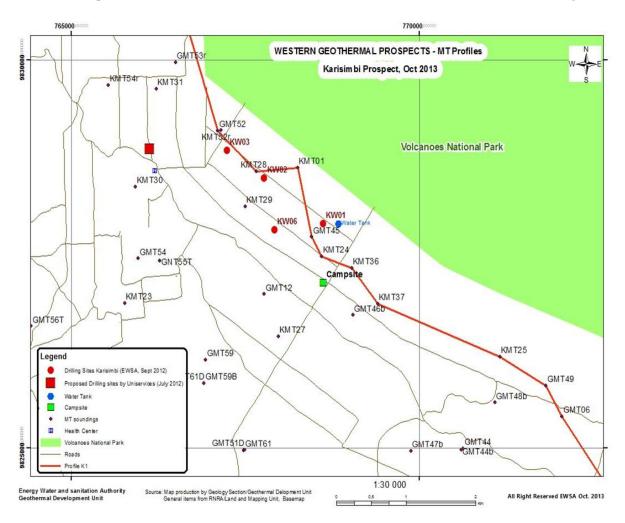


FIGURE 3: Location of drilled wells in Karisimbi prospect (GDU, 2013)

3.2 Kinigi geothermal prospect

The Kinigi geothermal area is located to the east of Karisimbi (Figure 1). Detailed surface studies as well as Environmental and Social Impact Assessment (ESIA) have been completed and supplementary studies were recommended to decide on the way forward for the exploration of this prospect.

Additional geoscientific surveys to update the Kinigi geothermal conceptual model were carried out in June 2015 by West Japan Engineering Consultants (WestJec) funded by JICA. Remote sensing data analyses, volcanic rock sampling and gravity surveys were completed followed by the construction of a conceptual model (Figure 4).

Results of the study were shared during a Technical Review Meeting (TRM) organized by UNEP-ARGeo and the Icelandic Ministry of Foreign affairs in May 2016. Additional studies to focus on summit of Sabyinyo and associated volcanic centres were recommended by the TRM but it was agreed that there is no conclusive sign of geothermal system in the Kinigi study area.

In parallel to the above initiative, the GoR submitted an Expression of Interest to the Geothermal Risk Mitigation Facility (GRMF) for support in infrastructure and exploration drilling of slim holes in Kinigi. The Kinigi project qualified for a grant award for slim holes drilling in 2015. However, in light of recommendations from the TRM, the GoR opted to suspend the grant award procedure.

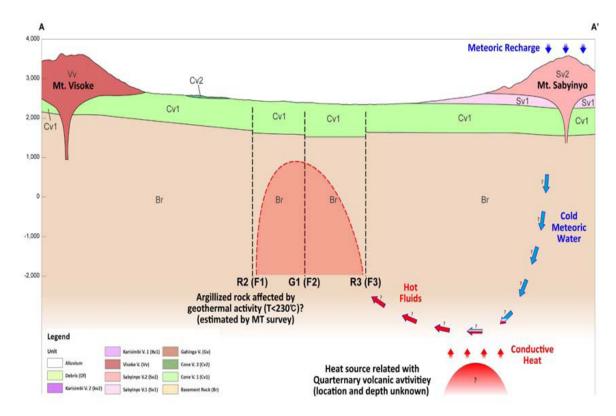


FIGURE 4: Conceptual model of the Kinigi geothermal area (JICA, 2016)

3.3 Gisenyi geothermal prospect

The Gisenyi geothermal prospect is located south-west of Karisimbi (Figure 1). Hot springs of about 75°C are located in the prospect at the shores of Lake Kivu. Geoscientific investigations have been carried out in the area. Additional studies to complement existing data in the Gisenyi area was awarded

to the Consortium SARL Geo2D and GDC funded by the European Union (EU). Preliminary results of the data collected were discussed during the TRM in May 2016 and additional geophysical and geochemical data were recommended.

The structural geology identified four areas of interest for geothermal detailed surveys: Kilwa (Area 1), Gisenyi (Area 2), Muti (Area 3) and Kanzanza (Area 4) (Figure 5). Detailed geophysical and geochemical data collection were carried out in area A1 and following conclusions interpretation the synthesis of available geological, geochemical, and geophysical data (Figure 6); it appears that a shallow geothermal reservoir at 100°C is identified and a deep

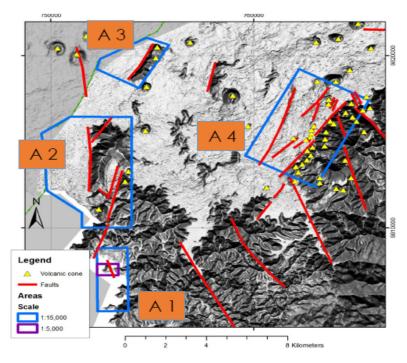


FIGURE 5: Geothermal target areas in Gisenyi prospect (GDC and SARL Geo2D, 2016)

reservoir develops at a temperature of ~160°C with deepest part at 200°C (GDC and SARL Geo2D, 2017).

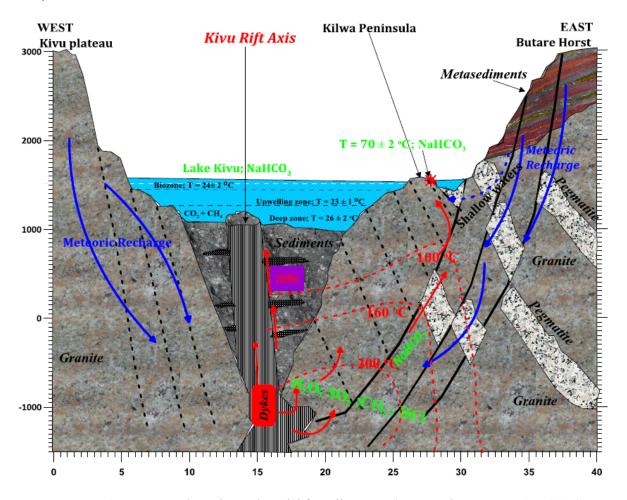


FIGURE 6: Conceptual geothermal model for Kilwa area (GDC and SARL Geo2D, 2017)

Considering that the geometry of the reservoir could not be well defined due to the limitations of the geoscientific methods deployed and the available data; MT measurements and slim holes drilling at the fault and across the peninsula, are recommended to get information on the depth of the reservoir. A proposal is being prepared for application to the GRMF.

3.4 Bugarama geothermal prospect

The Bugarama geothermal prospect is located in the southern province of Rwanda (Figure 1). The geothermal manifestations in this area are hot and warm springs and travertine deposits, which is being mined as feedstock for a nearby cement factory. The highest temperature for the springs is about 55°C.

A regional geothermal exploration study funded by EU started in November 2013 for the three countries, Democratic Republic of Congo, Burundi, and Rwanda. The consultancy firm hired for this project is Reykjavik Geothermal (RG). Great Lakes Energy Agency (EGL) was mandated for the implementation of this regional project.

Detailed geo-scientific surveys for the three countries were completed. Surface exploration and drilling of thermal gradient wells in the Rwandan part was completed and a conceptual model (Figure 7) was constructed. The conclusion of the study indicates that Bugarama is a typical low enthalpy system and no localized heat source is present. The predicted subsurface temperatures mainly based on silica geothermometers are in the range of 75°C to 115°C and the depth to the resource has been estimated to

be ≥ 1100 m. Additional geoscientific surveys and a market study for direct uses in the surroundings of the site are recommended to cover the information gaps from this survey. The GoR has submitted a proposal for technical assistance in proving the viability of Bugarama prospect through geoscientific surveys and market surveys for direct uses to the Climate Technology Centre & Network (CTCN) which is the operational arm of the UNFCCC Technology Mechanism, hosted by the UN Environment Programme and the UN Industrial Development Organization (UNIDO).

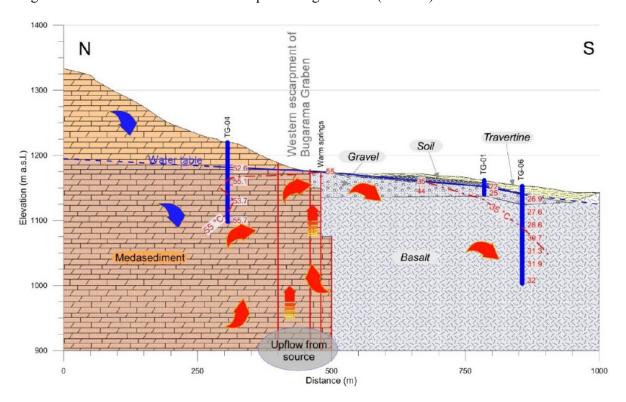


FIGURE 7: Conceptual model of the Bugarama geothermal area (Gíslason et al., 2016)

Furthermore, within the framework of the Long-Term Joint EU-AU Research and Innovation Partnership on Renewable Energy (LEAP RE), comprehensive geoscientific and socio-economic studies are being finalized with the aim of effectively implementing the Geothermal Village Concept in Mashyuza area. Teams of experts from African and European research institutions conducted detailed geophysical (MT and ERT), geological, hydrogeological, and socio-economic studies in 2022 and 2023. Currently, data is being integrated, and a conceptual model is being developed to identify suitable sites for exploratory wells with depths ranging from 800 to 1000 m. Additionally, there are plans for the design and construction of a demonstration facility for the multipurpose direct utilization of geothermal heat, specifically for rice drying and the preservation of fruits and vegetables.

4. OTHER INITIATIVES

A detailed Geothermal Strategy and Geothermal Act have been developed but are yet to be formally approved. The existing geothermal strategy has been reviewed through the support of EU Energy Initiative Partnership Dialogue Facility (EUEI-PDF). This study has considered the existing geothermal data and has developed a new strategy for geothermal exploration that will define the approach to private sector involvement in geothermal exploration and development in the country.

Furthermore, JICA supported the preparation of electricity development plan for sustainable geothermal energy development and its integration into the Electricity Master Plan. This master plan (JICA, 2015) gives estimates of the identified potential geothermal prospects based mainly on existing data with an

action plan for exploration and development of each prospect. Conclusions indicate a maximum estimation of 90 MWe geothermal resources potential for the country

Technical assistance and capacity building in the sector have been provided and financed by several institutions: the United Nations University Geothermal Training Programme (UNU-GTP), ICEIDA, UNEP-ARGeo, JICA, GDC, KenGen, Interim Project Coordination Unit of the Africa Geothermal Centre of Excellence (IPCU-AGCE), EUEI-PDF and others.

Presently, the Africa Geothermal Assistance Facility (NZ-AGF) established in 2017 by the New Zealand Foreign Affairs & Trade in partnership with the Africa Union Commission, is offering technical assistance and capacity building to EDCL to advance geothermal resources of Rwanda.

5. ISSUES AFFECTING THE DEVELOPMENT OF GEOTHERMAL ENERGY IN RWANDA

Theoretically, the estimates of geothermal energy potential can highly contribute to the supply of the national power needs for Rwanda. However, the pace and level of development of geothermal resources has not been effective. This is mainly due to lack of funds and the perceived risk in developing geothermal resources. Financing from multilateral institutions or international lenders is difficult without adequate data. The GRMF is one of the alternatives to be utilized.

Geothermal energy development generally has very high project development costs. Unlike diesel plants, where you can purchase the fuel when required, in geothermal you have to prove the availability of fuel (steam) in advance before power construction.

Other issues affecting the development of geothermal energy are marketing, institutional, and policy impediments. The role of geothermal development in the energy mix needs to be clearly defined with set and funded targets to prove the viability of a geothermal resource. There is need to share and disseminate information among all stakeholders and potential investors. The fear of developing geothermal energy has to be overcome among policy makers and opinion leaders. There is need to build adequate human resource capacity while at the same time encouraging local education institutions to provide training relevant to geothermal development. Clear guidelines on the level of participation of local community and other stakeholders in geothermal development and utilization are required.

Furthermore, the western branch of the East African Rift System (EARS) is yet to be well understood in order to apply adequate methodology for geothermal exploration in Rwanda. The western branch workshop held in Kigali early 2016 was the first step to understand the reason for unsuccessful projects in countries lying in the western rift despite exhaustive exploration activities. Appropriate methodologies and techniques for the exploration and development of geothermal resources in the western rift are therefore highly recommended.

6. CONCLUSIONS AND RECOMMENDATIONS

Rwanda has positive indicators of geothermal potential, yet the existence of the resource needs to be confirmed. Among the identified potential geothermal prospects, Karisimbi, Gisenyi, Kinigi and Bugarama, exploration efforts have been initiated with two wells drilled in the Karisimbi prospect. However, to mitigate the risks associated with drilling unproductive wells, there is a need for comprehensive assessment of the available data. The application of suitable methodologies for resource exploration is crucial. Establishing a criterion for siting wells is also essential to guide future exploration activities.

Existing data need to be reviewed and additional data collected through appropriate methodology in order to define a clear way forward and strategy for geothermal development in Rwanda. A careful approach is to be utilised in the exploration program to increase the success rates in future.

Continued efforts are necessary to understand the geothermal system of the western branch of the Rift. This will help increase success rates in geothermal exploration for countries situated along the western rift, including Rwanda.

Given the high risk associated with exploration drilling, the GoR should continue in engaging development partners to provide assistance in the exploration and development of Rwanda geothermal resources. Capacity building is imperative from the initial reconnaissance stage through resource development. There is a lack of appropriately trained local graduates from Rwandan Universities in some fields related to earth sciences (geology mainly). On job training and access to necessary equipment are required for young graduate scientists and engineers to comprehend the steps for geothermal exploration and development.

REFERENCE

Demange, J., Fabriol, R., Rançon, J.P., and Verzier, P., 1983: *Reconnaissance géothermique de la République du Rwanda: Rapport de synthèse*. Bureau de Recherches Géologiques et Minières, Orléans, France, 36 pp.

Egbert, J., Gloaguen, R., Wameyo, P., Ármannsson, H., and Hernández-Perez, P.A., 2009: *Geothermal potential assessment in the Virunga Prospect, Northern Rwanda*. Federal Institute of Geosciences and Natural Resources of Germany (BGR), Report – GEOTHERM 1 for the Rwandese Ministry of Infrastructure, 108 pp.

EWSA, 2012: *Proceedings validation and peer review geothermal workshop, 2nd-4th April 2012*. Energy, Water and Sanitation Authority Ltd., Kigali, Rwanda, 54 pp.

EWSA, 2013: *Data and Final Report Validation Workshop*, 9th-10th January 2013. Energy, Water and Sanitation Authority Ltd., Kigali, Rwanda, 19 pp.

Fridriksson, Th., Árnason, K., and Hardarson, B.S., 2014: Geothermal resources of Rwanda: Assessment of geoscientific data and conceptual models. Iceland GeoSurvey – ÍSOR, Reykjavík, Iceland, report ÍSOR-2014/025, 73 pp.

GDC and SARL Géo2D, 2016: Study in support of developing geothermal resources at Rubavu-Kalisimbi: Geological report. Geothermal Development Company Ltd. and SARL Géo2D, report for the Government of Rwanda, 79 pp.

GDC and SARL Géo2D, 2017: Study in support of developing geothermal resources at Rubavu-Kalisimbi: Conceptual model report. Geothermal Development Company Ltd. and SARL Géo2D, report for the Government of Rwanda, 60 pp.

GDU, 2013: *Map of locations of wells, Karisimbi prospects*. Energy, Water and Sanitation Authority Ltd. – Geothermal Development Unit, map.

GDU, 2014: *Location of Rwanda geothermal prospects*. Energy, Water and Sanitation Authority Ltd. – Geothermal Development Unit, map.

GEA, 1999: Preliminary report: Geothermal energy – The potential from clean power to Earth. Geothermal Energy Association, Washington DC, United States, 15 pp.

Gíslason, G., 2016: Conceptual model. Regional project for geothermal exploration in Rwanda, Burundi and DRC. Reykjavik Geothermal, report no. 13006-08, 18 pp.

JICA, 2015: Electricity development plan for sustainable geothermal energy development in Rwanda: Final report.

JICA, 2016: Electricity development plan for sustainable geothermal energy development in Rwanda: Book 3 of 4. Geothermal development plan. Final report.

Mariita, N.O., Wanjohi, A., Opondo, K., Kemboi, E., and Gachau, E., 2010: *Geothermal potential appraisal of Karisimbi Prospect, Rwanda (combined report)*. Kenya Electricity Generating Company Ltd., Nairobi, Kenya, 178 pp.

Newell, D., Rohrs, D., and Lifa, J., 2006: *Preliminary assessment of Rwanda's geothermal energy development potential*. Chevron, 27 pp.

Rutagarama, U., 2015: Geothermal resources development in Rwanda: A country update. *Proceedings World Geothermal Congress 2015*, Melbourne, Australia, 5 pp.

Shalev, E., Browne, P., Wameyo, P., Hochstein, M., Palmer, J., and Fenton, R., 2012: *Geoscientific surveys of the Rwandan Karisimbi, Gisenyi and Kinigi Geothermal Prospects. Final report.* Institute of Earth Science and Engineering, University of Auckland, Auckland, New Zealand, 150 pp.