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Predicting real-time geothermal well flow rate and enthalpy with 
machine learning techniques 

Agata Rostrán Largaespada 

August 2024 

 
Abstract 

Geothermal energy is a sustainable energy source offering reliable and renewable 
energy solutions. However, accurately measuring geothermal well output like flow 
rate and enthalpy for wells that produce a two-phase fluid remains challenging due 
to the complexity and infrequency of traditional methods. This thesis addresses 
these issues by continuing the work of developing a real-time method to measure 
flow rate and enthalpy from geothermal wells without interrupting operations. The 
focus is on accurately estimating geothermal fluids' flow rate and enthalpy using 
advanced rule-based models and machine learning techniques. 
 
This research integrates data-driven approaches for continuous monitoring and 
early detection of well performance changes by using measurements from 
Landsvirkjun's geothermal operations conducted in 2019, 2020, 2021, and 2023. 
The study employs a specialized differential pressure orifice plate meter setup at 
Theistareykir and Bjarnarflag Geothermal Power Plants, providing detailed 
measurements critical for the models. 
 
The most effective model employed Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN) for noise reduction, Recursive Feature 
Elimination with Cross-Validation (RFECV) for precise feature selection, and 
Random Forest Regression (RFR) with five key features, achieving a Root Mean 
Square Error (RMSE) of 0.011. This approach can significantly enhance the 
efficiency and accuracy of geothermal power production measurements, offering 
insights into real-time monitoring and operational optimization.
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Spá fyrir um rauntíma rennslishraða og entalpíu 
jarðvarmalinda með vélrænum námsaðferðum 

Agata Rostrán Largaespada 

ágúst 2024 

 
Útdráttur 

Jarðvarmaorka er sjálfbær orkuauðlind sem býður upp á áreiðanlegar og 
endurnýjanlegar orkulausnir. Hinsvegar getur verið erfitt að mæla nákvæm afköst 
borhola, eins og rennslishraða og vermi í borholum sem framleiða tvífasa vökva, 
vegna þess hve flóknar og lítt notaðar hefðbundnar mæliaðferðir eru. Þessi ritgerð 
er áframhald á þróun á rauntímamælinga á rennslishraða og vermi frá 
jarðhitaborholum án þess að trufla nýtingu þeirra. Megináherslan er á að áætla 
rennslishraða og entalpíu jarðvarmavökva með nákvæmni með notkun háþróaðra 
reglubundinna líkana og vélrænnar námsaðferða. 
 
Rannsóknin samþættir gagnadrifnar nálganir til samfelldrar vöktunar og 
snemmbúinnar greiningar á breytingum á afköstum jarðvarmalinda, með því að 
nota mælingar frá Landsvirkjun sem gerðar voru á árunum 2019, 2020, 2021 og 
2023. Sérstök mismunadrifninn þrýstingsþveropnumælir var notaður við 
Þeistareykja- og Bjarnarflagsvirkjun til að fá ítarlegar mælingar sem eru lykilatriði 
fyrir líkanagerðina. 
 
Árangursríkasta líkanið sem notað var í þessari rannsókn, notaði þéttleikadrifna 
hópmyndun með hávaða (DBSCAN) til að minnka hávaða, endurtekið 
úrtaksaðdrátt með krossstaðfestingu (RFECV) fyrir nákvæma val á eiginleikum, 
og slembiskógarreiknivél (RFR) með fimm lykileiginleikum, sem náði rótum 
meðalvillutölu (RMSE) upp á 0,011. Þessi nálgun getur verulega aukið skilvirkni 
og nákvæmni mælinga á jarðvarmavinnslu og veitt innsýn í rauntímavöktun og 
rekstrarhagræðingu. 
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Chapter 1 

1Introduction 

Geothermal energy plays an essential role as a reliable and renewable energy source. 
It harnesses the natural heat from the earth, providing a reliable and environmentally friendly 
energy supply. However, accurately measuring flow rate and enthalpy from geothermal 
wells, which produce a two-phase mixture of water and steam, presents a unique challenge. 
Traditional methods, such as the tracer dilution method, are complex, labour-intensive, and 
typically conducted a few times a year. Accurate and frequent measurements of flow rate 
and enthalpy from individual wells are crucial for balancing power demand with steam 
supply for geothermal power plants. 

 
This project primarily focuses on developing a method that enables real-time 

measurement of flow rate and enthalpy from geothermal wells without requiring them to be 
taken offline. The project uses data from experiments conducted by Landsvirkjun in 2019, 
2020 and 2021, along with new data collected in 2023.  

 
The main research goal of this thesis is to model a real-time measurement method for 

estimating geothermal fluid flow rate and enthalpy in a wide range of geothermal conditions 
using rule-based and machine learning models. This approach seeks to enhance the accuracy 
and efficiency of well output measurements. This project is particularly relevant at an 
industrial level because it may enable continuous monitoring without shutting down wells 
for output measurement methods. Early detection of changes in well performance enables 
timely intervention, preventing potential issues and optimising energy production. 

 
Experiments that were conducted by Landsvirkjun, Iceland's National Power 

Company, at Þeistareykir and Bjarnarflag Geothermal Power Plants resulted in a dataset 
organized into Reference Measurements (RM) and Experimental Measurements (EM). RM 
data includes field measurements of the total flow rate and enthalpy of the geothermal fluid 
using the separator and water tracer method, explained in Sections 2.1.1 and 2.1.2. EM data 
was gathered using a specialised differential pressure (DP) orifice plate meter setup, which 
uses three pressure taps instead of the traditional two, as described in Section 2.1.3. This 
setup may provide more detailed measurements and additional parameters, enhancing the 
accuracy of the data. Previous work in this field has primarily focused on traditional 
methods, which, although effective, have limitations regarding frequency and operational 
disruption. This project aims to provide a more efficient and accurate approach to real-time 
measurement by leveraging rule-based models and machine learning techniques. Rule-based 
models apply predefined rules to input data. In contrast, machine learning models use input 
and output data to learn and predict the relationships between variables, thereby improving 
the overall measurement process. 
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Chapter 2  

2Literature Review 

2.1 Methods for Flow and Enthalpy Measurements for 
geothermal wells 

In geothermal systems, the available power production is primarily determined by the 
flow rate and the enthalpy of the geothermal fluid. The geothermal industry employs various 
measurement techniques to assess these parameters, including total flow calorimetry, tracer 
dilution, separator methods, and lip pressure measurements. Alternative techniques such as 
differential pressure over an orifice plate, venturi meters, vortex meters, load cell sensors, 
and radio frequency methods have also been used. The choice of a specific measurement 
technique depends on the particular needs and circumstances of the project, as each method 
offers its unique set of advantages and limitations. 

 
In this subchapter, the separator method, water tracer method, and orifice plate with 

differential pressure meter method will be explained in detail, as these were the techniques 
used in the experiments conducted in 2019, 2020, 2021, and 2023, which are used in the 
analysis in this work. The separator method and orifice plate with differential pressure meter 
were used in the 2019 - 2021 experiments, while the 2023 experiments used the water tracer 
and orifice plate methods. Other methods will also be briefly discussed, explaining why they 
were not selected for these experiments. 

2.1.1 Separator Method 

The separator method involves using a steam separator at the end of the flow line to 
measure the real-time output of geothermal systems, focusing on the single-phase flow rates 
of steam and water. Typically, the steam flow is measured using differential pressure (DP) 
across an orifice plate or other gas flow meters, while the volumetric mass flow of the 
separated water is assessed with a water weir. (Helbig & Zarrouk, 2012). The two-phase 
flow rate entering the separator is calculated by summing the steam and water flow rates 
exiting the separator. To determine the total enthalpy h, the dryness fraction (steam quality, 
x) is utilised in the following equation: 

 (2.1) 

  
Here, enthalpies of water (hw) and steam (hs) represent the saturation properties at the 

separator pressure. Steam quality, also known as the dryness fraction, indicates the 
proportion of vapour in the fluid within two-phase flow systems. 

 
 

ℎ ൌ 𝑥ℎ௦  ሺ1 െ 𝑥ሻℎ௪

(2.2) 
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Here, ṁs and ṁw represent the steam and water flow rates, respectively. This method 

yields dependable real-time results and does not require wells to be taken offline but involves 
a substantial initial investment. Typically, multiple wells are linked to centralised separators, 
posing challenges in monitoring the individual performance of each geothermal well. 

2.1.2 Water Tracer Method 

This thesis used the water tracer method in the experiments and will be discussed in 
more detail in this section. The total enthalpy and the flow rate of a mixture of steam and 
water from a well can be determined by introducing specific chemical tracers of known 
concentrations into the pipeline carrying the two-phase substance (Lovelock, 2001). The 
tracers utilised for the steam and water phases are different. This difference arises because 
water and steam have distinct physical properties, especially in terms of solubility. Tracers 
for the water phase are selected for their high solubility in water, allowing them to accurately 
track the flow of the liquid phase. In contrast, steam phase tracers are chosen for their ability 
to remain in the gaseous phase, ensuring they effectively measure steam flow without 
dissolving in water. 

 Hirtz et al., (2001) explained that measuring the water phase typically involves using 
common tracers like potassium fluoride (KF), sodium bromide (NaBr), fluorescein dye, 
sodium benzoate, rhodamine WT dye, 1,5-naphthalene disulfonate, and 2,7-naphthalene 
disulfonate. Meanwhile, the steam phase employs tracers such as propane, sulfur 
hexafluoride (SF6), freon-12, helium, and isopropanol. The choice of a tracer depends on 
considerations like cost, availability, and local expertise. 

The equipment for this technique consists of two main components: an injection pump 
rig and a sampling setup. The process involves introducing chemical tracers from a tracer 
feed bottle into the upstream section of a two-phase pipeline through a positive-displacement 
dosing pump, which controls the injection rate. Subsequently, the tracers present in both the 
liquid and steam phases are collected at a sampling point situated downstream. Ideally, the 
steam sample is obtained at the upper part of the pipe, while the water sample is taken from 
a lower point (see Figure 3.4). It is crucial to ensure that the downstream sampling point is 
adequately distant from the injection point, allowing for thoroughly mixing the tracers with 
the geothermal fluids. 

 
The mass flow rate of steam and water can be calculated if chemical sampling results 

are available using the methods from (Lovelock, 2001), (P. Bixley, N. Dench, and D.Wilson, 
1998): 

 
 
 
 
Where ṁw𝑡 is the flow rate of the water tracer injection, Ċw𝑡 is the concentration of the 

tracer in water, ṁs𝑡 is the flow rate of the steam tracer injection, and Ċs𝑡 is the tracer 
concentration in steam. Lovelock, (2001) states that the steam mass flow rate (ṁs) in 
Equation (2.4) should be corrected for the steam tracer dissolved in the water: 

 
 

 
 

𝑚ሶ ௪ ൌ
ሶ ೢ

ሶೢ 
, 𝑚ሶ ௦ ൌ

ሶ ೞ

ሶೞ (2.3) 

𝑚ሶ ௦ ൌ
ሺ𝑚ሶ ௦௧𝑇௦ሻ െ ሺ𝑚ሶ ௪𝑇௪ሻ

𝑇௦
(2.4) 
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Where 𝑇w and 𝑇s are the concentrations of tracers in the water and steam phases, both 
steam flow (ṁs) and water flow (ṁw) are calculated at the pipeline pressure. Using the 
measured ṁs and ṁw values at pipeline pressure and the enthalpies hs and hw determined 
based on the saturated properties at the separator pressure, the total enthalpy (ℎ) can then be 
computed: 

 
 
 
 

 
Test results are usually available only after a few days, once the tracer sample analysis 

has been completed and returned from the laboratory. Helbig & Zarrouk, (2012) 
demonstrated that this method is the least precise and involves relatively high ongoing costs. 

2.1.3 Orifice Plate Method 

The orifice plate method will be discussed in detail since it was also utilised in the 
experiments to obtain results for this study. A typical orifice meter comprises a circular metal 
plate installed between pipe flanges featuring a square-edged round aperture within, shown 
inFigure 2.1. A depiction of the general sharp-edge orifice plate setup is illustrated in Figure 
2.1.These orifice plate meters can vary in design, with alternatives like conical entrance, 
quadrant edge, segmental, eccentric, and multi-hole plates, each suited for different flow 
conditions and fluid types. There are three common types of differential pressure tapping 
shown in Figure 2.1, A shows a flange tapping, B represents a radius tapping (D-D/2), and 
C depicts corner tappings (Mubarok et al., 2019). 

 

 

Figure 2.1 Cross-section of a sharp-edge concentric orifice plate and pressure tapping 
locations (Helbig & Zarrouk, 2012) 

Orifice plate meters are widely used for measuring gas flow, operating on the principle 
of differential pressure. Research has been conducted to predict frictional pressure losses in 
pipes for two-phase flow using orifice meters. These meters have been extensively studied 
over the past decades, leading to the development of several ISO standards (J. Kinney and 
R. Steven, 2014). The total steam flow rate from orifice plate measurements is calculated 

ℎ ൌ
ሺ𝑚ሶ ௦ℎ௦ሻ െ ሺ𝑚ሶ ௪ℎ௪ሻ

𝑚ሶ ௦  𝑚ሶ ௪
(2.5) 
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using the following equation: 
 
 
 
 
 

Where ρs is the steam density, and ΔPt denotes the pressure drop between the upstream 
pressure tap P1 and the downstream pressure tap P2 (ΔPt = P1 - P2, as shown in Figure 2.1). 
β, the diameter ratio is calculated by dividing the orifice diameter d, by the internal pipe 
diameter, D. Figure 2.1 illustrates these diameters. The formula for the β ratio is: 

 
 
 
 
An iterative process is used to determine the discharge coefficient, Cd: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 ReD, the pipe Reynolds number, is defined by the equation: 
 
 
 
 

Where µ is the dynamic viscosity of steam, D is the internal pipe diameter, and ṁs is 
the steam flow rate, and the equations for substitution factors are as follows: 

 
 
 
 

The values of the L parameters depend on the pressure tap configuration; flange taps 
have L1 = L2 = 0.0254/D, radius taps have L1 = 1 and L2 = 0.47, and for corner taps, 
L=L2=0. Typically, the discharge coefficient, Cd, is about 0.6, so beginning the iterative 
process with Cd = 0.6 is recommended. For the water phase, the expansibility coefficient, ϵ 
used in Equation (2.6), is 1, but for steam, it is calculated using the following formula: 

 
 
 

 
 
When the ratio (P2/P1) >0.75. 

𝑚ሶ ௦ ൌ
𝐶ௗ

ඥ1 െ 𝛽ସ
𝜖

𝜋
4

𝑑ଶඥ2∆𝑃௧𝜌௦ (2.6) 

𝛽 ൌ
𝑑
𝐷

(2.7) 

𝐶ௗ ൌ 0.5961  0.0216𝛽ଶ  0.216𝛽଼  0.00521 ቆ
10𝛽
𝑅𝑒

ቇ
.

 ሺ0.0188  0.0063𝐴ሻ𝛽ଷ.ହ ቆ
10

𝑅𝑒
ቇ

.ଷ
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2.1.4 Other Methods 

The following subsections will briefly discuss the total flow calorimeter, lip pressure, 
and load cell sensor methods. These methods, while effective in certain applications, were 
not selected for use in this study’s experiments because some require the wells to be taken 
offline during measurements, making them unsuitable for the continuous monitoring needed 
in this research. Additionally, some challenges and impracticalities associated with these 
methods are still being investigated. 

2.1.4.1 Total Flow Calorimeter 

The total flow calorimeter is a commonly used method to measure the mass flow rate 
and enthalpy of geothermal fluids. In this process, geothermal fluid is discharged into an 
open-top tank, where it is mixed with cold water. By measuring the initial and final volumes 
and temperatures of the mixture, the mass flow rate and enthalpy of the fluid can be 
calculated. However, this method is generally only practical for wells with low flow rates 
(up to 25 kg/s) due to the limited tank capacity for low-enthalpy geothermal wells but is 
limited by tank capacity (Helbig & Zarrouk, 2012). It is commonly used for testing small 
exploration wells or low-enthalpy wells. Challenges include potential steam loss from the 
tank, heat loss through the tank walls, and flow restrictions in the connecting pipeline, which 
can affect the accuracy of the measurements. Additionally, the well needs to be taken out of 
operation during testing. 

2.1.4.2 Lip Pressure Method 

The lip pressure method described by James (1965), estimates the mass flow rate and 
enthalpy of geothermal fluids by measuring the pressure at the pipe-lip as the fluid is 
discharged to the atmosphere. There are two variations of this method: vertical and 
horizontal. In the vertical setup, the lip pressure pipe is connected directly to the top control 
valve, while in the horizontal setup, the pipe is connected horizontally and leads into a 
silencer. The vertical method is suited for wells with liquid-only feeds, using empirical 
correlations to calculate flow rate and enthalpy based on the pressure and temperature at the 
lip. The horizontal method, however, can be used for wells with two-phase feeds and 
provides more accurate measurements but requires additional equipment and setup, making 
it more expensive. Limitations include high noise levels during vertical discharge and 
environmental contamination from discharged fluids, and the well needs to be taken out of 
production during testing. 

2.1.4.3 Load Cells Sensor 

Based on the piezoelectric principle, the Load cell sensor is commonly used for real-time 
stress measurement by converting mechanical force into an electrostatic signal. There are 
two types: compression, where the object is placed on a platform connected to the sensor, 
and tension, where the sensor acts as a suspending hanger. This method has been tested in 
geothermal fields to measure the dryness fraction of two-phase flow. Compression load cells 
installed under the pipeline measure changes in liquid weight, which can indicate changes 
in steam dryness. However, the method requires an initial dryness value, and challenges 
include thermal expansion affecting pipe weight and the impracticality of field tests, which 
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need to be repeated at each location. The data from load cells can be used to infer parameters 
like velocity, dryness, and enthalpy of geothermal fluids (Mubarok et al., 2021). 

2.1.5 Correlation Models for Two-Phase Flow 

To address the complexities of two-phase flows, various correlation models have been 
developed using a differential pressure (DP) orifice plate meter as a key measurement tool. 
These models, described in studies like from Murdock (1962), James (1965), Lin (1982), 
Zhang et al. (1992), Helbig & Zarrouk (2012), and Campos et al. (2014) and Mubarok and 
Zarrouk (2018), are summarized in Table 2.1.  

 
These correlation models are developed based on either separated or homogeneous 

flow assumptions. Separated flow models treat the phases distinctly, while homogeneous 
flow models consider them uniformly mixed. The models also vary in derivation 
approaches: phenomenological models rely on physical laws to describe flow behaviours, 
whereas empirical models are derived from experimental data. A key component of these 
models is the inclusion of correction factors, which are used in the two-phase flow 
correlation models to adjust key parameters based on empirical data or theoretical 
assumptions to enhance the model's accuracy for specific flow conditions. For instance, the 
James (1965) model uses a corrected dryness fraction (xm), while the (Mubarok et al., 2019) 
model employs a corrected enthalpy coefficient (Ch).  

 
In this study, the focus will be on the (James, 1965) and (Mubarok et al., 2019) models, 

as these have been determined to be most applicable to the geothermal data available. The 
details of these and other relevant models are summarised in Table 2.1  below, outlining the 
flow models and derivation approaches employed. 

Table 2.1 Summary of two-phase correlations 

Correlation Flow Model Derivation Approach 

Murdock (1962) Separated Phenomenological model 

James (1965) Homogeneous Empirical model 

Lin (1982) Separated Phenomenological model 
Zhang et al. (1992) Homogeneous Phenomenological model 

Helbig and Zarrouk (2012) Separated Empirical and phenomenological model 

Campos et al. (2014) Homogeneous Phenomenological model 

Mubarok et al. (2019) Separated Empirical and phenomenological model 

 
Models that rely on estimates of steam quality can also calculate it using the enthalpy 

(h) with the following formula: 
 
 
 
 

𝑥 ൌ
ℎ െ ℎ௪

ℎ௦ െ ℎ௪
(2.12) 
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Where hs and hw  are the enthalpies for the steam and water, and h is the specific 
enthalpy of the mixture, respectively. In this thesis, steam quality was calculated from the 
enthalpy at the upstream pressure point (P1) using PropsSI from the Coolprop library in 
Python (Bell et al., 2014), through the following function fit. 

 
 
 
Mubarok et al., (2021) utilised a large dataset from geothermal field tests to evaluate 

a correlation model introduced by Helbig & Zarrouk, (2012). For the entire range of 
geothermal reservoir enthalpies (600 - 2800 kJ/kg), they developed a new simplified 
correlation that provided increased accuracy and proposed an analytical model for predicting 
pressure drops across a two-phase orifice. The modified correlation by Helbig and Zarrouk 
is presented below: 

 
 
 
 
 
 
 
The following equation defines the James correlation model: 
 
 
 

 
 
The ’apparent’ steam flow (𝑚ሶ ௦ಲೌೝ

), is determined as described in the Equation 

(2.6). Steam quality (x) is calculated using Equation (2.13) while the steam and water 
densities (ρs and ρw) are obtained using PropsSI from the Coolprop library in Python (Bell 
et al., 2014). These densities are derived based on the upstream pressure (P1) for both the 
steam and water states: 

 
 
 
 

2.2 Machine Learning Techniques 

After collecting data from different geothermal flow measurement methods, applying 
correlation models, and identifying the important variables, machine learning techniques 
were used to develop prediction models. This Section 2.2 introduces and explains the various 
machine learning techniques and processes used in this study. A key distinction within these 
techniques is between supervised and unsupervised learning methods. Section 2.2.1 
introduces supervised techniques, such as the Random Forest Algorithm, a robust tool for 
both regression and classification tasks. Section 2.2.2, then transitions to unsupervised 
learning techniques, including Principal Component Analysis (PCA) and K-means 
clustering, which are crucial for data reduction and pattern recognition. 
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2.2.1 Supervised Learning Techniques 

Supervised learning relies on training data with targets, enabling models to learn the 
relationship between input features and the corresponding output. This approach is 
particularly effective for regression and classification tasks, where predictions are based on 
historical data. In this study, the Random Forest algorithm was employed for its robust 
regression capabilities, making it well-suited for tackling complex problems. 

2.2.1.1 Random Forest 

Random forest (RF) is a powerful algorithm used for regression and classification. It 
enhances the performance of individual decision trees  by combining them to create a more 
robust and accurate model (Breiman, 2001). RF is particularly effective in handling outliers 
and noisy data, making it a preferred choice for complex datasets. 

To comprehend random forest, it's essential to first understand decision trees. A 
decision tree classifies data by asking a series of questions at each decision point or node, 
where each node leads to subsequent branches based on the responses to these questions. 
The process starts at the root node and ends at the leaf nodes, representing the final outcomes. 
Internal nodes guide the branching decisions. As the dataset grows, the decision tree 
expands, making predictions by averaging the target values at the leaf nodes for regression 
tasks or by majority voting for classification tasks (Breiman, 2001). 

 
To further clarify how a decision tree works, consider the following example, where 

the objective is to predict whether someone will play golf based on weather conditions. The 
key features are Outlook, Humidity, and Wind, while the target variable is whether the 
person will play golf ("Yes" or "No") (Milaan, 2021).  The dataset used for this example is 
shown in Table 2.2. 

Table 2.2 Small data set for a decision tree example 

 
 
The decision tree is constructed as follows: 

 First Split: Outlook 
o If Outlook = Sunny, further splitting is done based on Humidity. 
o If Outlook = Overcast, the prediction is always "Yes" (the person will play 

golf). 
o If Outlook = Rain, further splitting is done based on Wind. 

 Second Split (Sunny Branch): Humidity 
o If Humidity = High, the prediction is "No." 
o If Humidity = Normal, the prediction is "Yes." 

 

Day Outlook Humidity Wind Play Golf?
1 Sunny High Weak No
2 Sunny High Strong No
3 Overcast High Weak Yes
4 Rain Normal Weak Yes
5 Rain Normal Strong No
6 Overcast Normal Strong Yes
7 Sunny Normal Weak Yes
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 Second Split (Rain Branch): Wind 
o If Wind = Weak, the prediction is "Yes." 
o If Wind = Strong, the prediction is "No." 

 
Based on the structure of the decision tree, the final predictions are as follows: 

 If the Outlook is Sunny and the Humidity is High, the prediction is that the person 
will not play golf. However, if the Humidity is Normal, the prediction is that the 
person will play golf.  

 If the Outlook is Overcast, the prediction is always that the person will play golf. 
 If thee Outlook is Rain, the decision depends on the wind conditions: if the Wind is 

Weak, the person will play golf, but if the Wind is Strong, the prediction is that the 
person will not play golf.  

 
These predictions show how the decision tree navigates through each condition 
combination to make a final decision. However, decision trees often face the issue of 
overfitting, where the model becomes overly complex and captures noise in the data. 
Random Forest mitigates this issue by constructing multiple decorrelated trees and 
averaging their predictions. 

 
In Figure 2.2 the Random Forest algorithm is shown as it Figure 2.2 combines multiple 

decision trees to generate a final prediction. The algorithm depicted is showing for 600 trees: 
 

 

Figure 2.2 Random Forest Diagram (Rudd & Ray, 2020) 

During training, the Random Forest algorithm works by generating several decision 
trees. A bootstrapped sample of the training data is used to create each tree, meaning the 
sample is drawn with replacement. During the construction of each tree, the algorithm selects 
a random subset of features at each split point, which helps to ensure the trees are 
decorrelated. 

After all the trees are built, the Random Forest makes a prediction by aggregating the 
predictions of each individual tree. For regression tasks, it averages the predictions from all 
trees. For classification tasks, uses the majority vote of the trees to determine the final class 
(Breiman, 2001).  
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In practical terms, this process can be summarised as follows: 
1. Bootstrap Sampling: Randomly sample the training data with replacement to 

create multiple subsets. This means some data points may be used multiple times 
while others may not be used at all. The number of trees is denoted by M, and each 
tree is built using a bootstrap sample from the training data. 

2. Tree Construction: For each subset, build a decision tree by: 
 Randomly selecting a subset of features at each split. 
 Choosing the best split among the selected features. 
 Splitting the node and repeating the process until a minimum node size is 

achieved. 
3. Prediction through Aggregation: For new data points, combine the predictions 

from all trees to determine the final prediction 𝑦ොሺ𝑥ሻ: 
 
 

For Regression: Average the predictions of all trees. 
For Classification: Use the majority vote from all trees. 

 
Where M is the total number of trees in the forest, Tm(x) is the prediction made by the 

m-th tree for the input x. Additionally, the samples not selected for training a particular tree, 
known as out-of-bag (oob) samples, are used to evaluate the performance of that tree. This 
allows RF to provide an unbiased estimation of the generalisation error without needing a 
separate validation set. The error decreases with increasing the number of trees, which also 
prevents overfitting (Breiman, 2001). Random Forest also assesses the importance of 
different features by measuring how the accuracy decreases when a specific feature is 
switched while keeping the rest constant. This is particularly useful in high-dimensional 
datasets to identify the most influential features. 

The RandomForestRegressor function from the Python library Scikit-learn (Pedregosa 
et al., 2011) was used in this thesis to implement the Random Forest algorithm. 

2.2.2 Unsupervised Learning Techniques 

Unsupervised learning relies on training data without targets, focusing on discovering 
hidden patterns or structures within the data. This method is used to group similar data points 
together or to reduce the dimensionality of data, making it easier to analyse. Techniques like 
clustering and dimensionality reduction are essential in scenarios where the goal is to explore 
data relationships without predefined outcomes. In this study, techniques like Principal 
Component Analysis (PCA) and K-means clustering are employed to simplify data 
complexity and reveal underlying relationships. 

2.2.2.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a fundamental technique for reducing the 
dimensionality of large datasets while retaining most of the variation present in the data 
(Jolliffe, 2002);(Kherif & Latypova, 2020). This method is particularly useful for high-
dimensional data, which refers to datasets with a large number of interrelated variables or 
features. Analysing and interpreting the relationships between variables can become 
complex in such datasets. PCA addresses this by converting the original variables into a new 
set of uncorrelated variables known as principal components (PCs), effectively simplifying 

�̂�ሺ𝑥ሻ ൌ
1
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the data and making it more insightful and easier to analyse. 
 
The main objectives of PCA are to extract the most important information from the 

data, reduce the number of variables to compress the dataset, simplify the data's description, 
and analyse the structure and relationships within the data (Jolliffe, 2002). PCA achieves 
dimensionality reduction by transforming the original variables into new variables that 
capture the maximum variance in the data. The first principal component accounts for the 
most variance, the second principal component accounts for the next largest variance and is 
orthogonal to the first, and this continues for the remaining components (Abdi & Williams, 
2010). 

 
Mathematically, PCA involves the eigen-decomposition of the covariance matrix of 

the data. The principal components are the eigenvectors of this matrix, with the eigenvalues 
indicating the variance captured by each component (Kherif & Latypova, 2020). The process 
includes standardising the data, computing the covariance matrix, performing eigen-
decomposition, and forming principal components based on the top eigenvectors (Jolliffe, 
2002). 

 
Using PCA offers several benefits. It facilitates data visualisation by reducing the data 

to 2D or 3D, making complex relationships easier to interpret. It enhances storage efficiency 
by reducing the amount of data to store and eliminates multicollinearity among variables, 
improving the robustness of the analysis. Additionally, PCA helps reduce noise and enhance 
data clarity and quality. It also improves the performance of machine learning algorithms by 
minimising the risk of overfitting and increasing computational efficiency (Abdi & 
Williams, 2010). 

 
In this thesis, PCA was implemented using the PCA function from the Python library 

Scikit-learn (Pedregosa et al., 2011). It was used to reduce the dimensionality of the dataset, 
making it more manageable and enhancing the subsequent analysis and modelling processes. 
This approach leverages PCA’s ability to capture the most significant patterns in the data, 
facilitating better insights and more efficient computations. 

2.2.2.2 K-means 

K-means is a widely used clustering algorithm in data mining and pattern recognition. 
Proposed by MacQueen, (1967), this unsupervised algorithm aims to partition a dataset into 
K distinct clusters, where each data point belongs to the cluster with the nearest mean, 
serving as the cluster centroid. 

 
The K-means algorithm operates iteratively to minimise the variance within each 

cluster. The process begins by selecting K initial centroids, which can be chosen randomly 
or based on specific criteria. The algorithm then follows these steps: initialising by choosing 
K initial centroids randomly from the dataset, assigning each data point to the nearest 
centroid to form K clusters, recalculating the centroids as the mean of all data points assigned 
to each cluster, and repeating the assignment and update steps until the centroids no longer 
change significantly or a predefined number of iterations is reached. The primary objective 
of K-means is to minimise the sum of squared distances between data points and their 
respective cluster centroids, known as the within-cluster sum of squares (WCSS). This 
approach ensures that the clusters are as compact as possible (Na et al., 2010). 
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K-means clustering is known for its simplicity, efficiency, and speed, making it 
suitable for large datasets. However, the algorithm has some limitations. It is highly 
dependent on the choice of initial centroids, which can significantly affect the final clusters. 
Different initialisations can lead to different results, potentially causing the algorithm to 
converge to a local minimum rather than the global minimum. Additionally, the user must 
specify the number of clusters (K) in advance, which might not always be optimal for the 
given data. K-means can also be sensitive to outliers, as they can disproportionately affect 
the position of the centroids. Furthermore, the algorithm assumes that clusters are spherical 
and equally sized. However, real-world data can form clusters of various shapes and scales, 
which the algorithm might not accurately capture (Olukanmi et al., 2022). In practice, the 
K-means algorithm is commonly implemented using the K-means function from the Python 
library Scikit-learn (Pedregosa et al., 2011), which provides an efficient and user-friendly 
interface for clustering tasks. 

2.2.2.3 Density-Based Spatial Clustering of Applications with Noise 

DBSCAN is a robust clustering algorithm widely used for data mining and spatial data 
analysis. It excels in identifying clusters of arbitrary shape and size, even in the presence of 
noise and outliers, making it particularly effective for large and complex datasets such as 
GIS, satellite imagery, remote sensing, and environmental assessment. DBSCAN groups 
together closely packed points and marks outliers that lie in low-density regions. It relies on 
two key parameters: Epsilon (ε), which defines the radius within which points are considered 
neighbours, and MinPts, the minimum number of points required to form a dense cluster. A 
point is classified as a core point if it has at least MinPts neighbours within a radius of ε. 
Clusters are formed by core points, and all reachable points from core points (Ester et al., 
1996). Figure 2.3 illustrates the clustering parameters used in DBSCAN, showing the 
classification of points as core, border, or noise based on their density. 

 

Figure 2.3 Description of DBSCAN Clustering Parameters (Götz et al., 2019) 

The main advantages of DBSCAN include its ability to discover clusters of arbitrary 
shape, handle noise and outliers, and operate without needing to specify the number of 
clusters in advance. However, it requires careful selection of ε and MinPts, struggles with 
datasets containing clusters of varying densities, and can be computationally intensive. 
Unlike K-means, DBSCAN does not require a predefined number of clusters, instead 
identifying each point as a core, border, or noise point based on density. This flexibility 
allows DBSCAN to handle non-globular clusters and identify clusters within clusters, 
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providing more precise results (Ester et al., 1996). The DBSCAN algorithm can be 
implemented using the DBSCAN function from the Scikit-learn library. 

2.2.3 Machine Learning Processes 

2.2.3.1 Feature Selection 

Feature selection is an important step in constructing effective machine-learning 
models. Its primary aim is to pinpoint the most relevant features that enhance the model's 
predictive accuracy while reducing computational costs. Using irrelevant or redundant 
features can degrade model performance and increase complexity. Different algorithms have 
built-in mechanisms for feature selection or dimensionality reduction (Theng & Bhoyar, 
2024). 

One method used in this study is Recursive Feature Elimination with Cross-Validation 
(RFECV). RFECV is a wrapper method that systematically removes less important features 
and uses cross-validation to evaluate model performance at each step. Starting with all 
features, RFECV ranks them based on their importance and iteratively eliminates the least 
important ones. This approach ensures the selection of the most relevant features while 
preventing overfitting (Awad & Fraihat, 2023). 

 
Another approach involves using the SelectKBest method, which is a type of filter-

based technique for feature selection. SelectKBest selects the top k features with the highest 
scores based on a statistical test. This method evaluates each feature individually against the 
target variable to determine its relevance (Pedregosa et al., 2011). 

 
Additionally, Random Forests provide an inherent feature importance measure. 

During the training process, Random Forests evaluated the significance of each feature based 
on its contribution to improving model accuracy. This method is efficient and helps identify 
the most critical features for the model. 

2.2.3.2 Standardization 

Standardization is an essential preprocessing step in machine learning that ensures all 
features contribute equally by scaling them to have a mean of zero and a standard deviation 
of one. This step is particularly important for techniques like Principal Component Analysis 
(PCA) and Density-Based Spatial Clustering of Applications with Noise 
(DBSCAN);(Shalev-Shwartz & Ben-David, 2014). 

 
Standardization adjusts data with a mean of zero and a standard deviation of one. This 

study used Z-score standardization equation:  
 
 

 
where Zx is the standardized value, Xi is the original value, μ is the mean, and σ is the standard 
deviation. Standardization was implemented in this study using the StandardScaler function 
from the Python Scikit-learn library (Pedregosa et al., 2011). This function standardizes 
features by removing the mean and scaling to unit variance (Shalev-Shwartz & Ben-David, 
2014). 
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2.2.3.3 Cross-Validation 

Cross-validation is a statistical method to test how well a machine learning model 
performs. It involves partitioning the dataset into smaller subsets, using multiple subsets for 
training and one subset for testing. This process is repeated several times to make sure the 
model performs well on different parts of the data. 

 
In this thesis, 5-Fold cross-validation was implemented. The dataset was divided into 

five groups, each used once as a testing set, while the remaining four groups are used for 
training. This process is repeated five times, and the final validation score is the average of 
the five testing scores. The choice of K=5 balances the trade-off between bias and variance, 
offering a reliable estimate of the model's predictive performance (Fushiki, 2009; Kohavi, 
1995). The validation score from K-Fold cross-validation is used to evaluate model 
performance during feature selection and hyper-parameter tuning, ensuring the model's 
accuracy and generalization to unseen data. 

2.2.3.4 Hyperparameter Tunning 

Hyperparameter tuning is an essential step in optimizing machine learning models. It 
involves selecting the best set of hyperparameters for a learning algorithm to improve its 
performance on a specific dataset. In this study, hyperparameter tuning was performed for 
several algorithms including Random Forest, DBSCAN, K-means, and SelectKBest. 

 
For the Random Forest algorithm, key hyperparameters such as the number of trees in 

the forest (n_estimators), the maximum depth of the trees (max_depth), the minimum 
number of samples required to split an internal node (min_samples_split), and the minimum 
number of samples required to be at a leaf node (min_samples_leaf) were tuned. Grid Search 
Cross-Validation (GridSearchCV) was employed to systematically explore different 
combinations of these hyperparameters and select the optimal set (Shalev-Shwartz & Ben-
David, 2014). 

 
The key hyperparameters for the DBSCAN algorithm are the maximum distance 

between two samples, known as eps, and the minimum number of samples needed for a 
point to be considered a core point, called min_samples. These parameters were tuned using 
GridSearchCV to ensure the algorithm correctly identifies clusters of varying densities. 

 
For K-means clustering, the main parameter to set is the number of clusters (k). The 

best number of clusters was found using the Elbow Method and Silhouette Score. The Elbow 
Method looks at how much variance decreases as you add more clusters, and the best choice 
is where the decrease slows down. The Silhouette Score checks how well each point fits into 
its cluster compared to others, with higher scores meaning clearer clusters (Na et al., 2010). 

 
The SelectKBest method, as described in Section 2.2.3.1,  involves selecting the top k 

features based on statistical tests. The k parameter was tuned by evaluating the performance 
of the model with different numbers of top features, ensuring the best subset of features was 
chosen for model training. 
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Chapter 3 

3Methodology 

This chapter presents an overview of the methodology used for data analysis in this 
study. Section 3.1 outlines the setup of the Landsvirkjun experiments for phases 1 and 2. 
Section 3.2 provides an overview of data gathering, preprocessing, and data cleaning. 
Section 3.3 explains how the models are evaluated based on performance criteria. Section 
3.4 describes the python packages used for data handling throughout the study. Finally, 
Section 3.5 discusses the development and implementation of machine learning models 
described in Section 2.2 .  

3.1 Landsvirkjun Real-Time Well Output Project 

This research was carried out in partnership with Landsvirkjun, the leading electricity 
provider in Iceland. Playing a crucial role in producing 75% of the nation's electricity from 
hydro, wind, and geothermal resources, Landsvirkjun has been actively operating since 
1965. It manages a network of 18 power stations located across five key regions within 
Iceland (Landsvirkjun, 2023a). This section will describe the background of the experiments 
gathered and goals of this study. 

3.1.1 Overview 

In 2019, Landsvirkjun began a project to determine a real-time measurement system for 
monitoring geothermal wells. The goal was to measure geothermal fluid's enthalpy and flow 
rate, allowing for continuous estimation of geothermal well output while the wells remain 
operational. This project aims to gather comprehensive data to improve reservoir management 
and optimize production processes. 

 
In 2019 to 2021, experiments were conducted at Þeistareykir in northeastern Iceland, 

one of Landsvirkjun's three geothermal power stations with the highest electrical production 
capacity. The project explored several measurement approaches utilising robust sensors placed 
along the flow line, extending from the wellhead to the steam separator. According to 
Juliusson et al., (2023),  the sensors considered for this testing phase included differential 
pressure (DP) sensors over an orifice plate, venturi meters, vortex meters, Coriolis meters, 
load cell sensors, and radio frequency sensors. To date, only the DP sensors with orifice plates 
and vortex meters have been tested in the Landsvirkjun project. While some of these 
techniques have been previously applied in geothermal environments, none have been 
confirmed for real-time measurement of flow and enthalpy. 

 
The latest experiments in 2023 were conducted at the Bjarnaflag power plant (see Figure 3.1). 
The Bjarnarflag geothermal area is in Mývatnssveit and commenced operations on 5th March 
1969. Bjarnarflag geothermal station is the smallest geothermal facility operated by 
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Landsvirkjun in Iceland and represents Iceland's first geothermal station of its type. Located 
near Námafjall Mountain, this station produces 5 MW of power. Besides producing 42 GWh 
of electricity annually, Bjarnarflag supplies steam for district heating and industrial use. It 
also provides geothermal water to the nature baths at Lake Mývatn (Landsvirkjun, 2023b).  
 

 

Figure 3.1 Map showing the location of Bjarnarflag geothermal power plant (Image 
obtained from Google Earth, 2023) 

3.1.2 Experiment Setup 

The experiments aimed to create a practical range of experimental conditions in terms 
of flow rate, enthalpy, and pipe size. Based on the operating experience at Landsvirkjun’s 
geothermal power plants, it was determined that each well would seldom produce more than 
35 kg/s, and the enthalpy would generally range between 1000 and 2800 kJ/kg. These 
specific ranges are important because they represent the usual operating conditions of the 
geothermal wells at Landsvirkjun. By focusing on these conditions, the model developed in 
this study aims to accurately predict flow rates and enthalpy within these realistic and 
relevant limits.  

 
For this thesis, data was collected from two sources: experiments conducted by 

Landsvirkjun between 2019 and 2021, referred to as phase 1, and a separate set of 
experiments carried out in 2023, referred to as phase 2, where the author collected data. The 
setups for these two phases of experiments are described in Sections 3.1.3 and 3.1.4.  

There are two categories of measurements: reference measurements (RM) and 
experimental measurements (EM). RM data comes from the measured values of the fluid 
flow rate, and enthalpy gathered using the water tracer and separation methods described in 
Sections 2.1.1 and 2.1.2. The EM are recorded at the same time using differential pressure 
(DP) across orifice plates as described in 2.1.3. 

3.1.3 Phase 1 - Experiments 2019 - 2021 

Phase 1 of Landsvirkjun's enthalpy sampling experiments, conducted in 2019, 2020 
and 2021 in the Þeisthareykir field, was divided into stages based on the sensor types used 
in the flow line. The initial stage involved experiments on wells ÞG-11, ÞG-15, and ÞG-18. 
These wells were connected to a steam separator via a 40-meter-long pipe. The first 20 
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meters had a diameter of 250 mm, and after the bend in the pipe, it narrowed to 200 mm, as 
shown in Figure 3.2. Four test runs were conducted on well ÞG-18, located on well pad F, 
as shown in Figure 3.2, a single line diagram, and an aerial photograph of this setup from 
(Juliusson et al., 2023) study. Additionally, six test runs were carried out on the combined 
output from wells ÞG-11 and ÞG-15, located on well pad B, as shown in Figure 3.3. 

 
Fluid flow rate and enthalpy are measured in real-time at the end of the flow line using 

a steam separator as described in Section 2.1.1. These measurements, referred to as 
Reference Measurement (RM) data, include values obtained from separated steam and liquid 
flow measurements. The steam flow was measured by a vortex meter, while a water weir 
measured the liquid flow. As a backup, the steam flow was also measured using the lip 
pressure method as described in Section 2.1.4.2, and the liquid water flow is measured with 
a magnetic flow meter. The vortex meter uses fluid oscillation to measure the flow of gas, 
steam, or liquid flow and records the steam flow exiting the pipe at the separator's top. The 
separated liquid is directed into a weir box for mass flow measurements under atmospheric 
conditions. A v-notch water weir is then used to calculate the liquid phase flow rate 
(Einarsson, 2021). 

 

Figure 3.2 Setup of an experiment carried out on well ÞG-18, well pad F, at the 
Þeistareykir field (taken from Juliusson et al., 2023)  
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Figure 3.3 Setup of an experiment carried out on wells ÞG-11 and ÞG15, well pad B, 
at the Þeistareykir field (taken from Juliusson et al., 2023). 

3.1.4 Phase 2 - Experiments 2023 

Phase 2 of Landsvirkjun experiments, where the author participated, conducted in 
2023 in Bjarnaflag on well BJ-12, employed a modified water tracer method with an orifice 
plate, developed by Kemia and Landsvirkjun in 2011 (Hauksson, 2011). This approach 
integrates previous techniques with the water tracer method, described in Section 2.1.2, 
where a known concentration of sodium fluorescence dye is injected into the flow using a 
pump. The dilution of this dye downstream is then measured to calculate the water flow. 

 
Pressure measurements were taken at various points along the flow line (P0, P1, and 

P2), as shown in Figure 3.4 and Figure 3.5. The wellhead pressure (P0) was controlled and 
varied, ranging from fully open to almost fully closed. During the first test run 20.03.2023, 
pressures ranged from 18.4 to 21.3 bar g. However, the second test run on 02.11.2023, which 
had pressures at 29.25 bar g, had to be discarded due to errors in the DP measurements. 

 
A separator was connected after the orifice plate, with a metal cooling coil in a bucket 

before taking the liquid sample using a 300 mL glass flask (see Figure 3.4). A "blank" water 
sample was taken before the sodium fluorescence entered the stream. After ensuring proper 
flow, the pump was started; the pump connected to the wellhead is shown in Figure 3.5. 
Once the fluorescence was visible, samples were collected in glass bottles every 3 minutes. 
Each bottle was rinsed three times before filling, and the lid was screwed tightly once full. 
The bottles were then placed in a cardboard box and kept out of sunlight to prevent the dye 
from breaking down. This process was repeated until all samples were collected. 
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Figure 3.4 Setup of water tracer 
method 

 

Figure 3.5 Pumping tracer into well BJ-
12 

 In Figure 3.6, a sketch of the entire setup is shown, illustrating both the internal and 
external components. Inside the well dome, the pump responsible for injecting the tracer 
into the flow line is located, and the wellhead pressure (P0) is measured at this point. Outside 
the dome, pressures P1 and P2 are measured along the flow line, which is then used to 
calculate the pressure drop across the orifice plate, and the water sample is collected after it 
passes through the cooling coil.  

 

Figure 3.6 Water tracer method setup 
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The author conducted the sampling, and Landsvirkjun carried out the analysis using a 
fluorometer to determine the dye concentration. The results were processed using 
Landsvirkjun's classified calculation method, which is based on a combination of correlation 
models described in Section 2.1.5. Typically, such tests are performed once a year during 
the summer. However, for this research, they were conducted twice, in March and 
November, with different wellhead pressure configurations to cover a broader range. 
Landsvirkjun provided the data for use in this thesis. 

3.1.5 Differential Pressure Meter Setup 

Differential Pressure (DP) meters, such as orifice plate meters, are commonly used in 
the gas industry for measuring flow rates, particularly for natural gas and other hydrocarbon 
fluids (Upp & LaNasa, 2014). The experimental measurement (EM) data is obtained from a 
DP orifice plate meter setup, illustrated in Figure 3.7. This setup includes three pressure 
taps: one at a distance of 1D upstream (P1), another at 1/2D downstream (P2), and a third at 
6D downstream (P3), with D representing the pipe diameter. This configuration measures 
the pressure drop between P1 and P2, as well as the pressure recovery between P2 and P3. 
By analysing these pressure changes, we can determine the flow characteristics and 
understand the fluid dynamics within the pipe.  

Unlike traditional DP orifice plate meters that use two pressure taps, this setup utilises 
three pressure taps, offering more measurements and additional parameters. The aim is to 
investigate whether there exists a relationship between the measured physical properties 
(like pressure readings from the taps P1, DP12, DP13, and DP32) (see Figure 3.8) recorded 
during the experimental measurements (EM) and the calculated properties (such as enthalpy 
h and mass flow rate ṁ) derived from reference measurements (RM), described by the 
function: 

 
 

 
This approach aims to correlate the experimental data with the reference 

measurements, improving the accuracy and reliability of the output measurements. 
 

𝑓ሺℎ, 𝑚ሶ ሻோெ ൌ 𝑔ሺ𝑃1, 𝐷𝑃12, 𝐷𝑃13, 𝐷𝑃32ሻாெ (3.1) 
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Figure 3.7 Configuration of the DP Orifice Plate Meter 

 

 

Figure 3.8 Setup on well BJ-12 DPs 

TWO PHASE FLOW DIRECTION 

ORIFICE PLATE 
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3.2 Data Overview 

3.2.1 Data Gathering 

The data used in this thesis comes from experiments of phases 1 and 2, described in 
Sections 3.1.3 and 3.1.4, conducted by Landsvirkjun. These experiments were designed to 
find practical methods for measuring the flow rate and enthalpy of geothermal fluid in real-
time. Table 3.1 provides a summary of the test runs for phases 1 and 2 used for this research. 

 
Phase 1 dataset was provided, cleaned, and processed (Section 3.2.4)  by Juliusson et al., 
(2023) and ready to be used in this study. For phase 2, the new dataset was collected by 
Landsvirkjun, with the author assisting during the measurements. The author was present 
with the chemical team during both test runs in phase 2. Landsvirkjun recorded the data, ran 
it through their system for calculations, and shared the results in Excel format. Additionally, 
data from the differential pressure meters (DP) was downloaded and shared. This new dataset 
needed to be validated, cleaned, and processed for further analysis. 

Table 3.1 Summary of Phase 1 and 2 test runs 

 
 

One significant difference between phase 1 and phase 2 test runs is the number of data 
points collected in each run. The separator method as described in Section 2.1.1  allow for 
the collection of as many data points as the differential pressure sensors (DP) can register. 
However, the water tracer method described in Section 2.1.2 used in phase 2 tests resulted 
in fewer data points. In the first test run, five points were collected, and in the second, six 
points were collected. Unfortunately, not all data points were usable due to the DP not 
registering reliable data at the time. Specifically, the BJ-12 test run 1 had to be discarded. 
Nevertheless, phases 1 and 2 data points are presented in the results Section 4.1.1.  

 
The diameter ratio, β (see in Equation (2.7)), for phase 1 test runs, it was 0.7, except 

for the fourth test run on ÞG-18, where it was 0.5. For phase 2 experiments, the first test run 
had a diameter ratio of 0.4, while the second test run had a ratio of 0.7. 

 
The flow rate and enthalpy ranges also differed between phase 1 and 2 test runs. In the 

phase 1 tests, the flow rate ranged up to 35 kg/s, and the enthalpy varied between 1000 and 
2800 kJ/kg. In contrast, phase 2 tests recorded flow rates between 20-30 kg/s and enthalpy 
values between 1600 and 2000 kJ/kg, which fall within the ranges observed in phase 1 but 
contribute additional data within these specific intervals. 

Start End Pipe diameter Orifice diameter Pipe diameter orifice Diameter

ÞG - 18 Test Run 1 18.09.2019, 17:02 16.11.2020, 08:02 254 mm (10") 178 mm (7") 203 mm (8") 142 mm (5.5")

ÞG - 18 Test Run 2 22.06.2020, 17:01 10.07.2020, 08:01 254 mm (10") 178 mm (7") 203 mm (8") 142 mm (5.5")

ÞG - 18 Test Run 3 30.07.2020, 17:00 04.08.2020, 08:00 254 mm (10") 178 mm (7") 203 mm (8") 142 mm (5.5")

ÞG - 18 Test Run 4 04.08.2020, 15:30 07.08.2020, 12:00 254 mm (10") 127 mm (5") 203 mm (8") 102 mm (4")

ÞG - 11 & þG - 15 Test Run 1 12.09.2020, 10:51 16.09.2020, 15:20 340 mm (13.4") 238 mm (9.38") 254 mm (10") 178 mm (7")

ÞG - 11 & þG - 15 Test Run 2 16.09.2020, 23:00 18.09.2020, 15:20 340 mm (13.4") 238 mm (9.38") 254 mm (10") 178 mm (7")

ÞG - 11 & þG - 15 Test Run 3 28.09.2021, 16:45 07.10.2020, 12:00 340 mm (13.4") 238 mm (9.38") 254 mm (10") 178 mm (7")

ÞG - 11 & þG - 15 Test Run 4 21.06.2021, 17:00 25.06.2021, 14:00 340 mm (13.4") 238 mm (9.38") 254 mm (10") 178 mm (7")

ÞG - 11 & þG - 15 Test Run 5 5.07.2021, 21:00 09.07.2021, 15:00 340 mm (13.4") 238 mm (9.38") 254 mm (10") 178 mm (7")

ÞG - 11 & þG - 15 Test Run 6 01.09.2021, 10:00 08.09.2021, 17:00 340 mm (13.4") 165 mm (6.5") 254 mm (10") 178 mm (7")

BJ -12 Test Run 1 20.03.2023, 8:30 21.03.2023, 17:30 345 mm (13.6") 139 mm (5.5")

BJ -12 Test Run 2 02.11.2023, 10:30 02.11.2023, 23:59 345 mm (13.6") 239 mm (9.4")

Phase 1 - Separator 
method

Phase 2 - Water tracer 
method

Experiments
Time Period Pipe Section 1 (See Figures 3.2,3.3) Pipe Section 2 (See Figures 3.2,3.3)
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To illustrate the difference in the number of data points collected, Table 3.2 compares 

the quantity of phase 1 and 2 data points: 

Table 3.2 RM Data points cleaned 

Experiments methods Number of Data Points 
Separator Method 19454 

Water Tracer Method 5 

3.2.2 Data Preprocessing 

The datasets for each test run are organised by aligning the reference measurements 
(RM) and experimental measurements (EM) based on their timestamps. The next section 
will explain the methods used to estimate the enthalpy and total flow rate. 

3.2.2.1 Reference Measurements 

The RM for phase 1 experiments were provided pre-processed by Juliusson et al., 
(2023). In these experiments, the flow rate and enthalpy are derived from the separator 
method Equations  (2.1) and (2.2)  in Section 2.1.1. where the geothermal fluid flow 
enters a steam separator, which separates it into vapour and liquid phases. A vortex meter at 
the top of the separator measures the steam flow rate, while the separated liquid is directed 
into a V-notch water weir box to find the water flow rate. Additionally, the water level in 
the separator is monitored, with fluctuations converted into volume changes to correct the 
total water flow entering the separator (Einarsson, 2021). 

 
For phase 2 experiments, the enthalpy and flow rate values were provided directly by 

Landsvirkjun water tracer analysis described in Section 2.1.2, requiring no additional 
calculations. 

 
All modelling of fluid properties in this study assumes that the geothermal fluid 

consists of pure water and steam. The steam quality is used to calculate the total enthalpy of 
the geothermal fluid. The enthalpies for the steam and water phases are determined using 
the PropsSI function in Python (see Equation ( (2.1)). 

3.2.2.2 Experimental Measurements 

In this thesis, three different pressure modes are utilised: absolute, gauge, and 
differential. These modes are essential for various calibration methods, and all pressure 
values are expressed in either pascals (Pa) or bars (bar). The orifice plate meters recorded 
pressure readings using various units based on the type of differential pressure sensors. If 
the pressure was measured in pounds per square inch (psi) or inches of water (inH2O), it was 
converted to bar units to ensure consistency. Differential pressure values were kept as bars, 
while gauge pressures (bar-g) were converted to absolute pressure (bar-a) by adding 
atmospheric pressure (Patm). This atmospheric pressure was obtained from hourly logs 
recorded at a nearby weather station. This conversion ensures all pressure readings are in a 
consistent and comparable format for analysis. 
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3.2.3 Dataset and Parameters 

The dataset, organised according to the layout shown in Table 3.3, which is presented 
without specific values to illustrate key reference measurements such as enthalpy (h) and 
mass flow rate (ṁ), alongside experimental measurements like upstream pressure (P1) and 
differential pressures, ΔPt (see Equation (3.2)), ΔPppl (see Equation (3.3)) and ΔPr (see 
Equation (3.4)) and also shown in Figure 3.7. These parameters are essential for the analysis, 
enabling the calculation of PRL (see Equation (3.5)),  PRR (3.6)) and RPR (3.7)). 

Table 3.3 Dataset Structure, including RM and EM and Setup Configuration 

 
 
The difference in pressure between taps P1 and P2 is used to determine the “traditional” 

pressure loss (Δ𝑃t), and it is calculated as follows: 
 
 
 

“Permanent” pressure loss (Δ𝑃ppl) is calculated as the pressure difference between 𝑃1 
and 𝑃3: 

 
 
 
“Recovery” pressure (Δ𝑃r) is measured by calculating the pressure difference between P3 and 
P2. 
 
 
 
Before proceeding with the analysis, it is necessary to define additional parameters. The 
differential pressure loss ratios PLR, PRR, and RPR are expressed by the following equations: 
 
 
 
 
 
 
 
 
 
 
 
 
Where PLR represents the pressure loss ratio, PRR is the pressure recovery ratio, and PPR is 

h ṁ P 1 ∆P t ∆P ppl ∆P r D d β

ÞG well Test Run 1
ÞG well Test Run 2
ÞG well Test Run 3
ÞG well Test Run 4
ÞG well Test Run 5

BJ well Test Run 1
BJ well Test Run 2

Reference Measurements Configuration
Data samples

Experimental Measurements

∆𝑃௧ ൌ 𝑃ଵ െ 𝑃ଶ

∆𝑃 ൌ 𝑃ଵ െ 𝑃ଷ

∆𝑃 ൌ 𝑃ଷ െ 𝑃ଶ

𝑃𝐿𝑅 ൌ
∆𝑃

∆𝑃௧

𝑃𝑅𝑅 ൌ
∆𝑃

∆𝑃௧

𝑅𝑃𝑅 ൌ
∆𝑃

∆𝑃

(3.2) 

(3.3) 

(3.5) 

(3.6) 

(3.7) 

(3.4) 
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the ratio between the recovery and permanent loss. The densities as described in Equation 
(2.16) are used to determine the ratio of steam to water density, denoted as DR, defined as: 
 
 
 

3.2.4 Data Cleaning and Quality 

The phase 1 data preprocessing of EM, as described by Einarsson, (2021); Juliusson 
et al., (2023) involved detecting and correcting inaccuracies based on several quality criteria. 
Completeness was ensured by removing samples with missing values, often due to non-
operational equipment. Measurements that fell outside specified range constraints were 
discarded. Consistency checks led to the removal of unresolvable inconsistencies. Spikes in 
data were addressed using moving averages, and excessively noisy data was excluded. DP 
data was validated against set criteria, and corrections were applied when discrepancies were 
minimal. Backup measurements were used for additional corrections, and the water level in 
the separator was monitored to adjust for fluctuations. Following the cleaning process, the 
dataset was reduced to 19454 datapoints, as shown in Table 3.2 

 
For phase 2 experiment, the data cleansing process was faster due to the fewer data points, 
with only 11 points collected from the water tracer method. However, ensuring that the DP 
sensors provided accurate measurements simultaneously with the water tracer sampling was 
critical to correctly classify these points as Experimental Measurements (EM). During the 
experiments, adjustments to the wellhead pressure (WHP) required time for the well to 
stabilise, which was reflected in the DP meters as spikes. Moreover, the 6 points from the 
second test run had to be discarded because the DP measurements indicated inaccurate 
readings, with trends that were physically unrealistic and inconsistent with the expected 
operational behaviour, reducing the dataset to 5 points, as shown in Table 3.2. 

3.3 Performance Criterion 

This study used the Random Forest Regression model to predict steam quality (x) 
based on features derived from DP orifice plate measurements, resulting in a numerical 
output. The performance of the model was evaluated using Root Mean Squared Error 
(RMSE) and Mean Absolute Percentage Error (MAPE). RMSE measures the average 
magnitude of errors, penalising larger discrepancies more heavily, while MAPE provides a 
scale-independent percentage error, making it easy to compare across different datasets. 
These metrics are essential for understanding the model's accuracy in predicting steam 
quality. 

 
This thesis evaluated the effectiveness of various predictive methods and models for 

estimating steam quality, which is essential for determining the geothermal fluid’s flow rate 
and enthalpy. The performance of these models was assessed by comparing their numerical 
outputs to the reference data (RM) using two key metrics: 

 
1) The Mean Absolute Percentage Error (MAPE) is widely utilised as a metric for its 

scale-independent characteristics, making it advantageous for comparing errors 
across different scales. MAPE provides insight into the accuracy of predictions by 

𝐷𝑅 ൌ
𝜌௦

𝜌௪
(3.8) 
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expressing errors as a percentage. It is calculated as follows: 
 
 

 
 
 
Where yi is the actual value, 𝑦ො is the predicted value, and n is the number of observations 
(Tayman & Swanson, 1999) 

 
2) The root mean Squared Error (RMSE) is another essential metric frequently used 

during the development phase. RMSE is beneficial for comparing the same method 
under various internal settings, as it penalises larger errors more than smaller ones 
(Chai & Draxler, 2014). It is calculated as follows: 

 
 
 

 
 

3.4 Python Packages used for Analysis 

This study utilised a range of Python libraries to facilitate data handling, statistical 
analysis, machine learning, and thermodynamic calculations. The following libraries and 
tools were instrumental in the execution of this research: 

 
Jupyter Notebooks: All analysis and model development were conducted using 

Jupyter Notebooks. This tool was chosen for its flexibility and ability to combine code 
execution, data visualisation, and narrative text in a single document. Jupyter Notebooks 
allowed for an iterative and interactive approach to the research, making it easier to 
document and reproduce the analysis (Kluyver et al., 2016). 

 
Pandas: The Pandas library was extensively used for data manipulation, including 

data cleaning, transformation, and aggregation. It provided powerful data structures like 
DataFrames, which were crucial for managing the complex datasets used in this study 
(McKinney, 2010). 

 
NumPy: NumPy was employed for numerical operations, particularly in handling 

large arrays and performing mathematical computations. Its integration with Pandas and 
other libraries made it a fundamental tool for efficient data processing (Harris et al., 2020). 

 
Scikit-learn: This library was the basis for all machine learning tasks, including 

model training, validation, and evaluation. Scikit-learn was used for: 
 

 Random Forest Regression: Employed for predicting steam quality based on 
features derived from DP orifice plate measurements. 

 
 DBSCAN: Used for clustering data points and identifying noise, particularly 

useful in handling large and complex datasets. 

𝑀𝐴𝑃𝐸 ൌ
∑ ฬ

𝑦 െ �̂�
𝑦

ฬ
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𝑛
ൈ 100% (3.9) 
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 K-means Clustering: Applied to group data into clusters, facilitating the 

analysis of similar data points. 
 

 Principal Component Analysis (PCA): Used for dimensionality reduction, 
helping to simplify the dataset while retaining most of its variance. 

 
 SelectKBest: Utilized for feature selection, allowing the model to focus on the 

most relevant features. 
 

 Recursive Feature Elimination with Cross-Validation (RFECV): Applied 
to iteratively remove less important features, ensuring that the model retains 
only the most relevant variables for improved accuracy and to prevent 
overfitting. 
 

 GridSearchCV: Employed for hyperparameter tuning, GridSearchCV 
systematically worked through combinations of model parameters, using 
cross-validation to find the best set of parameters that optimise model 
performance (Pedregosa et al., 2011). 

 
Matplotlib and Seaborn: Matplotlib and Seaborn were utilised to create detailed 

plots and graphs for data visualisation. These visualisations were essential for exploratory 
data analysis and for interpreting the results of machine learning models (Hunter, 2007; 
Waskom, 2021). 

 
CoolProp: Thermodynamic calculations were performed using the CoolProp library, 

specifically the PropsSI function, which provided accurate water properties required for the 
rule-based models (Bell et al., 2014). 

 
All parameters for rule-based models and thermodynamic calculations were applied 

in either base units or derived units of the SI system, ensuring consistency and accuracy 
across all computations. 

3.5 Model Development 

Data preprocessing plays an important role in machine learning because the quality of 
the data and the insights derived from it greatly influence the model's learning effectiveness. 
Before training the model, the dataset must undergo preprocessing, which has been 
described in Section 3.2.2. In this study, the following steps were implemented to build the 
machine learning model: 

 
1. Hold-out set creation: A portion of the dataset was reserved as a "hold-out" set for 

final evaluation. 
2. Data labelling: The target variable, steam quality (x), was labelled based on features 

derived from DP orifice plate measurements. 
3. Normalization: Data was scaled to ensure all features contribute equally, typically by 

adjusting values between 0 and 1 or by having a mean of 0 and standard deviation of 
1 (Section 2.2.3.2). 
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4. Cross-Validation (Section 2.2.3.3): Used to assess model performance, with specific 
steps including: 

a. Feature Selection: RFECV and Random Forest feature importance methods 
were employed to identify the most relevant features (Section 2.2.3.1). 

b. Hyperparameter Tuning: Optimization of model parameters through Grid 
Search Cross-Validation (GridSearchCV) (Section2.2.3.4). 

5. Final evaluation on hold-out set: The model's performance was tested on the "hold-
out" set to ensure its generalizability and prevent overfitting. 

 
The goal is to create a regression model using Random Forest to predict steam quality 

(x) based on features derived from DP orifice plate measurements, resulting in a numerical 
output. The primary aim of constructing an optimal model is to test its performance on new 
data, preventing overfitting. Overfitting happens when a model achieves high accuracy with 
training data but poorly on new, unseen data due to excessive adjustment to the training 
data's specific patterns and noise. This is a significant challenge in machine learning. 

 
A cross-validation method was applied to mitigate overfitting and ensure reliable 

evaluation. This involved training the models on part of the dataset and evaluating their 
performance on unseen data. A "hold-out" set, representing 20% of the full dataset, was 
separated and not used until the final performance evaluation. This approach ensures that 
the model's performance is assessed on truly unseen data, providing a more accurate measure 
of its predictive capabilities. 

 
The features used to train the models are derived from the DP orifice plate meter, as 

defined in Section 3.2.3. These features are crucial for the model to learn and make accurate 
predictions. For the regression problem, the target variable is the estimated steam quality 
(x), as seen in Figure 3.9. Proper labelling of these target variables is essential for effective 
model training and accurate predictions. In this context, the differential pressures were 
renamed as follows: ΔPt to DP12, ΔPppl to DP12 and ΔPr to DP32. 

 

Figure 3.9 Feature set and target variable 

For feature selection in this study, recursive feature elimination with cross-validation 
(RFECV) and random forest feature importance were used to optimise the model's 
performance, as described in Section 2.2.3.1. By selecting the most relevant features and 
reducing computational complexity, these methods help to enhance the model's efficiency 
and accuracy. RFECV works by systematically eliminating the least important features and 
using cross-validation not only to evaluate model performance but also to reduce prediction 
error. Similarly, Random Forest determines feature importance by assessing how much each 
feature decreases prediction error across all trees during training. Both methods, 
implemented using Scikit-learn, ensured that the optimal number of features was selected, 
thus improving the model's overall performance. In addition, hyperparameter tuning was 
performed for several algorithms, including Random Forest, DBSCAN, K-means, and 
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SelectKBest. 
 

For the Random Forest algorithm, described in Section 2.2.1.1, key hyperparameters 
were tuned to optimise model performance. The number of trees (n_estimators), which 
represents how many decision trees are built in the forest, was initially set to 100 and 
incrementally increased. The performance metrics improved up to 600 trees, after which no 
significant gains were observed, indicating that 600 trees provided the optimal balance 
between accuracy and computational efficiency. Other parameters, such as the maximum 
depth of the trees (max_depth), which controls how deep each tree can grow, were left at the 
default value of None, allowing the trees to expand until all leaves are pure or contain fewer 
than the minimum samples required to split a node (min_samples_split). This parameter, 
min_samples_split, determines the minimum number of data points needed to split an 
internal node, while the minimum number of samples at a leaf node (min_samples_leaf) 
defines the smallest number of samples that a leaf node can contain. These parameters were 
also kept at their default values. To identify the optimal combination of these 
hyperparameters, Grid Search Cross-Validation (GridSearchCV) was employed, which 
systematically explores various parameter combinations to find the most effective ones. 
Additionally, the random_state parameter was set to 42 to ensure reproducibility. The 
random_state acts as a seed value, which is a starting point for the random number generator 
that controls the randomness of data splitting. The choice of 42 was arbitrary, but it is 
commonly used in the machine learning community as a standard example. Using the same 
seed value (42), the model produces the same random splits and results each time it is run, 
ensuring consistency and allowing others to replicate the analysis exactly. 

 
For the DBSCAN algorithm, as described in Section 2.2.2.3 and Figure 2.3, the key 

hyperparameters are 'eps', epsilon (ε), which specifies the radius within which points are 
considered neighbours, and 'min_samples,' which determines the minimum number of points 
required to form a dense cluster (core point). In this study, the optimal values for these 
parameters were determined through GridSearchCV, a systematic search process. After 
evaluating different combinations, eps was set to 0.10 and min_samples to 10, ensuring the 
algorithm accurately identified clusters of varying densities. This tuning process is essential 
for DBSCAN to effectively group closely packed points and distinguish outliers in large, 
complex datasets. 

 
For K-means clustering, as described in Section 2.2.2.2,  the primary hyperparameter 

is the number of clusters (k). In this study, the value of k was kept at  300, consistent with 
the methodology by Juliusson et al., (2023) to facilitate direct comparison of results. The 
decision was made to ensure consistency and comparability with earlier studies. 

 
For the SelectKBest method, as described in Section 2.2.3.1, the key parameter tuned 

was k, which specifies the number of top features to select based on their statistical 
significance. This tuning process involved evaluating the model's performance with different 
values of k to identify the optimal subset of features. The final selected features included:  

 the pressure upstream of the orifice (P1),  
 the traditional differential pressure over the orifice (DP12),  
 the pressure loss ratio (PLR = DP13/DP12), 
 the pipe diameter (D) and the orifice to pipe diameter ratio (β)  

These features were identified as the most relevant  in  Juliusson et al., (2023) research, 
showing the best performance results. 
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Chapter 4 

4Results and Discussion 

This chapter outlines the findings from all the activities carried out in this study. 
Section 4.1 organizes and presents the data after preprocessing and cleaning. Section 4.2 
discusses predictions for the two-phase flow mass rate using predefined correlation models. 
Lastly, Section 4.3 provides a detailed discussion on the results of the machine learning 
prediction models. 

4.1 Data  

Table 4.1 summarizes the key details of the experiments conducted during the two 
phases of this study, including the wells used, the measurement methods applied for 
Reference Measurements (RM) and Experimental Measurements (EM), and the β ratios 
employed. This overview provides context for understanding the experimental setups and 
the corresponding results that will be discussed in the following sections. 

Table 4.1 Summary of the Experiments 

  

4.1.1 Total Flow Rate and Enthalpy 

The results from the phase 1 experiments, conducted between 2019 and 2021, are 
presented in Figure 4.1, which includes all data test runs data points including varying the β 
values. The phase 2 experiments, carried out in 2023, are shown in Figure 4.2. As noted in 
the previous chapter, fewer data points were collected during the phase 2 experiments. 

Experiments Year Wells RM EM β

Phase 1 2019-2021 ÞG-11, ÞG-15, ÞG-18 Separator method DP meters 0.5 , 0.7

Phase 2 2023 BJ -12 Water tracer method DP meters 0.4 , 0.7
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Figure 4.1 Data points from phase 1 
experiments in 2019-2020 

 

Figure 4.2 Data points from phase 2 
experiments in 2023 

 

4.1.2 Orifice Plate Measurements 

Figure 4.3 presents the Experimental Measurement (EM) data from the 2019-2021 
experiments, focusing on the differential pressure parameters DP12, DP13, and DP32, as 
defined in Equations (3.2), (3.3) and (3.4). Figure 4.4 shows the DP measurements taken 
during the 2023 experiments. The highlighted blocks in this figure indicate the periods 
during which the water tracer method was performed for test run 2 on well BJ-12. This data 
reflects the orifice meter readings for differential pressures DP12, DP13, and DP32. 

 

Figure 4.3 Phase 1 DP measurements in Þeistareykir - all test runs 

 

Figure 4.4 Phase 2 DP measurements BJ12- test run 1 with highlighted zones when 
the water trace method was performed 
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4.2 Rule Base Model 

4.2.1 Two-phase Flow Correlation Models 

In this section, the performance of two widely used two-phase flow correlation models 
Mubarok et al., (2021) and James, (1965), described in Section 2.1.5, was evaluated. These 
models are essential for calculating flow rates in geothermal wells. 

 
The evaluation was based on comparing the predicted flow rates from each model with 

the measured field data. This comparison was quantified using two error metrics: Mean 
Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) using  Equations 
(3.9) and  (3.10), which are standard measures to assess the accuracy of model predictions 
against observed data. Table 4.2 presents the MAPE and RMSE for the two models. 

  
The Mubarok et al., (2019) model requires accurate enthalpy values, which were used 

to calculate the flow rates as described in Equation (2.14). 
 
For the James, (1965) model, the flow rates were calculated using Equations (2.15) 

and (2.16). These equations rely on the pressure P1 from RM and enthalpy being an integral 
part of the calculation. 

 
The James, (1965) model consistently provides more accurate predictions, as indicated 

by its significantly lower MAPE and RMSE values compared to the model from Mubarok 
et al., (2019). In both phases and both models, the reference measurements (RM) parameters 
were used to calculate the flow rates. 

 

Table 4.2 Two phase flow correlation models performance 

Correlation Model 
  

Full Data Set BJ-12  

Mubarok (2019) 
MAPE % 189,6 18,7 
RMSE 38,8 6,1 

James (1965) 
MAPE % 12,1 23,5 
RMSE 2,7 7,4 

 
The results indicate that the James, (1965) model provides more accurate predictions 

with a significantly lower MAPE and RMSE compared to the Mubarok et al., (2019) model 
for the full data set. The James model is especially effective when the steam quality (x) is 
close to 1, as the flow behaviour closely resembles single-phase steam. For the phase 2 
dataset, the results are similar, with less pronounced differences between the two models. 
The other models mentioned in Section 2.1.5, could not be applied due to the lack of 
collected parameters for this dataset. 

 
Figure 4.5 shows the comparison of measured and calculated flow rates for the 

Mubarok (2019) and James (1965) models, respectively.  
  



34    

   

Figure 4.5 Measured vs calculated flow rates using two phase flow correlations 

From these figures, it can be observed that the James, (1965) model aligns more 
closely with the measured field data, demonstrating better overall accuracy compared to the 
Mubarok et al., (2019) model. The Mubarok model shows larger deviations, especially at 
higher flow rate regions. This conclusion is further supported by the significantly lower 
MAPE and RMSE values for the James model, indicating better performance and accuracy. 

4.3 Machine Learning Models 

This section provides the results and discussion of all the procedures implemented for 
machine learning models in this research. The focus is on the development and evaluation 
of various scenarios using different algorithms, with a primary emphasis on the Random 
Forest regression model. 

 
The study involved updating previous work, referred to as the baseline, done by 

Juliusson et al., (2023), with phase 2 data points. The initial step was to run the Juliusson et 
al., (2023) code with the new data points to assess performance.  

 
To enhance the model performance, several cases were created in this study by altering 

different components of the machine learning processes. These cases included variations in 
clustering methods, data reduction techniques, and feature selection methods while 
consistently using Random Forest as the regression model. The aim was to determine the 
optimal combination of these techniques to improve the accuracy and reliability of the 
predictions. 

 
The following cases were modelled: 
 
    Case 1: Targeted Feature Selection Using K-means and Grid Methods in Random 

Forest Regression (Section 4.3.1) - This case focused on evaluating whether incorporating 
new data points would enhance the prediction performance of the model by using specific 
features identified in previous studies by (Juliusson et al., 2023) . 

 
    Case 2: SelectKBest for All Features Using K-means and Grid Methods in Random 

Forest Regression (Section 4.3.2) - In this case, the selection of different features was 
explored to improve the model's prediction accuracy, using SelectKBest to identify the most 
relevant features. 
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    Case 3: Dimensionality Reduction and Clustering with Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) and Principal Component Analysis 
(PCA) in Random Forest Regression (Section 4.3.3) - This case investigated the combination 
of DBSCAN for clustering and PCA for dimensionality reduction to refine the model's 
performance. 

 
    Case 4: Fractional Data Reduction, Clustering, and Feature Elimination with 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and Recursive 
Feature Elimination with Cross-Validation (RFECV) in Random Forest Regression (Section 
4.3.4) - This final case examined the impact of reducing data points and using RFECV for 
feature selection to enhance the model's predictive capabilities. 

 
Each of these cases provided insights into the effectiveness of different data processing 

and feature selection techniques, ultimately contributing to the development of a robust 
Random Forest regression model for predicting steam quality. 

4.3.1 Case 1: Targeted Feature Selection Using K-means and Grid 
Methods in Random Forest Regression 

For this case, the objective was to evaluate if incorporating new data points would 
enhance the prediction performance of the model. The original data set from phases 1 and 2 
consisted of 19459 data points. Figure 4.6 shows the flow diagram of the model, which 
follows a series of steps beginning with data collection, preprocessing, and scaling.  

 
The initial step involved data collection, where data from Phase 1 and Phase 2 were 

collected. Data preprocessing was the next step, combining the datasets from both phases 
and performing necessary cleaning and preparation tasks. This step also involved calculating 
necessary parameters, such as differential pressures and ratios, to prepare the data for model 
training. Once preprocessed, the data was standardized by scaling, as described in Section 
2.2.3.2, ensuring all features had a mean of zero and a standard deviation of one.  

 
The subsequent steps focused on data reduction, which was done using two methods: 

K-means (Section 2.2.2.2) clustering and the Grid method similar to the approach used in 
the previous work by Juliusson et al., (2023).  
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Data collection (19459 Data points)

Holdout Set 
20 %

Scale Data

Data preprocessing

Training Set 80%

Data Reduction (k means/Grid)
                    300 / 326 Data points

Random Forest regression

Feature  selection (SelectKBest)

Hyper parameter tunning(GridSearchCV)

Model evaluation (RMSE)

Prediction (Steam Quality )

Data splitting

 

Figure 4.6 Flow diagram Case 1: Targeted Feature Selection Using K-means and 
Grid Methods in Random Forest Regression 

K-means clustering assigns each observation to a cluster based on its proximity to the 
nearest cluster center. In this study, 300 clusters were created using features such as pipe 
diameter, beta ratio, upstream pressure (P1), differential pressure over the orifice (DP12), 
and the pressure loss ratio (PLR=DP13/DP12). The Grid method selected one data point 
closest to the center of each block defined by flow rate, enthalpy, pipe diameter, and β ratio. 
This reduced the data from 19 459 to 326 points, ensuring a representative subset. 

 
Feature selection was performed using the same features identified in Juliusson et al., 

(2023) research: P1,  DP12, PLR, D, β. These features were selected based on a combination 
of insights from the data and results from a linear regression algorithm (Einarsson, 2021). 

 
After data reduction and feature selection, the dataset was split into a training set 

(80%) and a holdout set (20%). Random Forest regression (Section 2.2.1.1) was used as the 
predictive model, followed by hyperparameter tuning (Section 2.2.3.4) and model evaluation 
using RMSE (Section 3.3). The results including all data (phase 1 and 2) for K-means 
clustering and the Grid method were compared against the results by Juliusson et al., (2023) 
in Table 4.3. 
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Table 4.3 Comparison of RMSE results 

Method 
RMSE 

Phase 1 + 2 
RMSE Phase 1 

(Juliusson et al., 2023) 

K-means Clustering 0.036 0.030 

Grid Method 0.054 0.075 

The updated results which included new data of Phase 2 indicate a slight improvement 
in the RMSE for the Grid method, decreasing from 0.075 to 0.054. However, the K-means 
clustering method showed a minor increase in RMSE, from 0.030 to 0.036. This suggests 
that while both methods provide relatively accurate predictions, the Grid method benefited 
more from the additional data points. 

 
Additionally, a useful approach to visualize the quality of the predictions is plotting 

the measured and predicted steam quality using contour lines, representing areas of similar 
data point density, showing where the predicted and measured steam quality values 
frequently occur. In the plot, the x-axis represents the measured steam quality (x_measured) 
obtained from field data, while the y-axis shows the predicted steam quality (x_predicted) 
generated by the model. The closer these lines are to the diagonal line x_predicted = 
x_measured, the better the model's predictions align with the actual measurements. The color 
intensity of the contour lines shows the density of these points, with darker regions indicating 
a higher concentration of predictions and measurements in close proximity, suggesting more 
frequent occurrence of those values. Figure 4.7 shows these contour plots for the Grid 
method and K-means clustered data, respectively. These visualizations highlight how 
effectively K-means clustering creates a representative subset of data for making accurate 
predictions. 

(a) Using K-means method (b) Using Grid method 

Figure 4.7 Measured vs predicted steam quality values 

The K-means clustering method proved to be highly effective, maintaining strong 
performance even with large datasets and various changes in data. These findings emphasize 
how crucial data reduction techniques and careful feature selection are for boosting the 
performance of models. 

Overall, the combination of scaling, clustering, feature selection, and hyperparameter 
tuning has proven effective in developing a reliable Random Forest regression model for 
predicting steam quality. The improvements observed in the Grid method's RMSE 
demonstrate the value of incorporating new data points and refining data processing 
techniques. 



38    

   

Given these results, it is crucial to explore the selection of other features or consider 
all features to see how this could further improve the model's performance. The next case 
will focus on this modified approach, aiming to identify the optimal set of features that 
maximize predictive accuracy. 

4.3.2 Case 2: SelectkBest for all features using K-means and Grid 
Methods in Random Forest Regression 

In this case, the objective was to explore the selection of different features to enhance 
the prediction performance of the model.  The process used the same flow diagram as in 
Figure 4.6 , and followed the same initial steps as described in Case 1 (Section 4.3.1.),  
including data preprocessing, scaling, and splitting the dataset into a training set (80%) and 
a holdout set (20%). 

 
The SelectKBest method (Section 2.2.3.1) was used to select different combinations 

of features based on their relevance. Random Forest regression (Section 2.2.1.1) was used 
as the predictive model, followed by hyperparameter was applied to optimize the model. 
The performance of each feature combination was evaluated using the RMSE metric, and 
both RMSE values and the importance of selected features were recorded as shown in Table 
4.4. 

 
In Table 4.4 the Selected Features column presents the features identified by the 

SelectKBest method for each value of k, where k represents the number of top features 
selected. The RMSE column displays the model's performance for each set of features, with 
lower RMSE (see Equation (3.10)) values indicating better predictive accuracy. The Feature 
Importance column provides the importance scores of the selected features, ranked by their 
contribution to minimizing the RMSE. A higher importance score signifies that the feature 
has a more significant impact on reducing the model's predictive error, thereby enhancing 
the accuracy of the predictions. 



   39 
 

  

Table 4.4 RMSE and selected features and feature importance 

 
The exploration of feature selection highlighted several key findings. As the number 

of selected features increased, the RMSE generally decreased, indicating improved model 
performance. The best RMSE was achieved using 9 and 10 features, with a value of 0.0123. 
This demonstrates the importance of selecting an optimal set of features for accurate 
predictions. 

 
The selected features varied across different values of k, but certain features such as 

RPR, d, DP12, and DP32 consistently appeared among the top features, indicating their 
significance in predicting steam quality. Including these features contributed to a more 
robust and accurate Random Forest regression model. 

 
Conversely, features like 𝛽 and 𝐷 were among the least important, as indicated by 

their lower importance scores in the Random Forest model. This suggests that while these 
features are part of the dataset, they do not significantly contribute to the predictive accuracy 
of steam quality. 

 
While the SelectKBest method is useful for identifying the most relevant features, it 

has some limitations. One of the main disadvantages is that it evaluates each feature 
independently of the others. This means it might miss combinations of features that are only 
significant when considered together. For example, a pair of features might not be 
particularly informative on their own but could be highly predictive when combined. 
SelectKBest does not account for such interactions, potentially overlooking optimal feature 
combinations. 

Overall, the results suggest that a careful selection of features, combined with effective 
data reduction techniques and hyperparameter tuning, can significantly enhance the 
performance of the model. The limitations of the SelectKBest method highlight the need for 
more sophisticated feature selection techniques that consider feature interactions. In the next 
cases, methods such as Recursive Feature Elimination with Cross-Validation (RFECV) will 
be explored. 

Number of 
Features (k)

Selected Features RMSE Feature Importance

1 ['DP32'] 0.0687 DP32: 1.0

2 ['DR', 'DP32'] 0.0234 DP32: 0.6281, DR: 0.3719

3 ['DR', 'DP32', 'P1'] 0.0233 DP32: 0.6271, DR: 0.1948, P1: 0.1780

4 ['DR', 'DP32', 'P1', 'RPR'] 0.0169 RPR: 0.6889, DP32: 0.2347, P1: 0.0388, DR: 0.0376

5 ['DR', 'DP32', 'P1', 'RPR', 'd'] 0.0164 RPR: 0.5809, d: 0.3194, P1: 0.0355, DR: 0.0331, DP32: 0.0311

6 ['D', 'DR', 'DP32', 'P1', 'RPR', 'd'] 0.0164
RPR: 0.5808, d: 0.3184, P1: 0.0348, DR: 0.0337, DP32: 0.0310, 
D: 0.0013

7 ['D', 'DR', 'DP32', 'P1', 'RPR', 'PRR', 'd'] 0.0154
RPR: 0.5630, d: 0.3183, P1: 0.0344, DR: 0.0324, DP32: 0.0294, 
PRR: 0.0212, D: 0.0013

8 ['D', 'DR', 'DP12', 'DP32', 'P1', 'RPR', 'PRR', 'd'] 0.0123
RPR: 0.5621, d: 0.3158, DP12: 0.0404, P1: 0.0211, DP32: 
0.0206, DR: 0.0198, PRR: 0.0197, D: 0.0006

9 ['beta', 'D', 'DR', 'DP12', 'DP32', 'P1', 'RPR', 'PRR', 'd'] 0.0123
RPR: 0.5614, d: 0.3144, DP12: 0.0401, P1: 0.0213, DP32: 
0.0206, DR: 0.0200, PRR: 0.0201, beta: 0.0015, D: 0.0006

10 ['beta', 'D', 'DR', 'DP12', 'DP13', 'DP32', 'P1', 'RPR', 'PRR', 'd'] 0.0123
RPR: 0.5634, d: 0.3143, DP12: 0.0355, P1: 0.0209, DR: 0.0195, 
DP32: 0.0180, PRR: 0.0177, DP13: 0.0085, beta: 0.0016, D: 
0.0006

11 ['beta', 'D', 'DR', 'DP12', 'DP13', 'DP32', 'P1', 'PLR', 'RPR', 'PRR', 'd'] 0.0125
RPR: 0.4888, d: 0.3173, PLR: 0.0880, DP12: 0.0228, P1: 0.0210, 
DR: 0.0202, PRR: 0.0170, DP32: 0.0122, DP13: 0.0067, D: 
0.0055, beta: 0.0005
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4.3.3 Case 3: Dimensionality Reduction and Clustering with Based Spatial 
Clustering of Applications with Noise (DBSCAN) and Principal 
Component Analysis (PCA) in Random Forest 

In this case, involves using DBSCAN (Section 2.2.2.3) as a clustering method and 
PCA (Section 2.2.2.1) for dimensionality reduction to address some limitations observed 
with previous methods and enhance the model's predictive accuracy. The combination aims 
to improve the identification of data structures and enhance the overall predictive accuracy 
of the model.  

The overall process, including the steps taken and the final evaluation, is depicted in 
Figure 4.8. 

 
Data collection (19459 Data points)

Holdout Set 
20 %

Scale Data

Data preprocessing

Training Set 80%

Data Reduction (DBSCAN)

Random Forest regression

Feature  selection (PCA)

Hyper parameter tunning(GridSearchCV)

Model evaluation (RMSE)

Prediction (Steam Quality )

Data splitting

Dimensionality Reduction (PCA)

 

Figure 4.8 Flow diagram Case 3: Dimensionality Reduction and Clustering with 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and 

Principal Component Analysis (PCA) in Random Forest Regression 

The dataset was prepared by combining phase 1 data points with phase 2 data points. 
The data preprocessing was performed as described in Section 4.3.1, involving scaling the 
data to ensure consistency across features. 

 
 DBSCAN (Section 2.2.2.3) was then applied to identify clusters, filtering out noise 

and outliers. After applying DBSCAN, PCA (Section 2.2.2.1) was used to transform the 
filtered data into principal components., as described in Section 2.2.2.1. The PCA was 
designed to retain 95% of the total variance in the data, which means that the selected 
components capture the most significant patterns and variations. This reduced the 
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dimensionality from 11 features to 5 principal components (PC1, PC2, PC3, PC4, PC5).  
 
Principal components are defined as linear combinations of the original features that 

capture the maximum variance in the data. The first principal component (PC1) captures the 
most variance, the second principal component (PC2) captures the second most variance, 
and so on. In this study, the first five principal components were selected because they 
collectively explained 95% of the total variance in the dataset, effectively summarising the 
information contained in the original 11 features. 

 
The transformed dataset was split into training (80%) and hold-out (20%) sets. A 

Random Forest regression model was trained using GridSearchCV (Section 2.2.3.4) to 
optimise hyperparameters. The best model was selected based on the lowest RMSE of 
0.0134.  

 
The results of the feature importance analysis, as shown in Figure 4.9 , indicated that 

PC2 and PC1 were the most significant principal components for predicting steam quality. 
This highlights the effectiveness of PCA in capturing the most relevant information from 
the dataset. 

 

 

Figure 4.9 PCs feature importance results 

The detailed loading scores for the principal components are presented in Table 4.5. 
For example, PC2 had high loadings for DP32 (0.372) and PRR (0.547), indicating their 
significant impact on steam quality predictions. PC1 showed high loadings for DP12 (0.437) 
and DP13 (0.443). PC4's high loading for PLR (0.857). While PC5 and PC3 were less 
important, PC5's notable loading for the orifice to pipe diameter ratio (beta) was at 0.711. 
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Table 4.5 Principal components loading scores 

 
 

In this case, the application of DBSCAN and PCA demonstrated a significant 
improvement in model performance, as evidenced by the reduced RMSE. The results 
emphasise the importance of advanced clustering and dimensionality reduction techniques 
in refining predictive models. 

Figure 4.10 shows the contour plot for the Case 3 (DBSCAN - PCA – RFR) model, 
demonstrating a highly linear relationship between predicted and measured steam quality 
values. The levels in the contour graph represent different density thresholds, which each 
level indicating the concentration of data points at that specific density, as shown by the 
colour bar on the side. The close alignment of these lines with the diagonal (x_predicted = 
x_measured) line indicates that the model's predictions closely match the actual 
measurements.  

 
This linearity is a direct result of the PCA's effect on the data, where the dimensionality 

reduction process compresses the original feature set into a few principal components that 
encapsulate the main variance in the dataset. PCA effectively captures the most critical linear 
relationships among the features, leading to the observed alignment in the predictions. This 
transformation allows the Random Forest Regression model to focus on the most impactful 
variations, contributing to its predictive accuracy. 

 

Figure 4.10 Measured vs predicted steam quality with DBSCAN -PCA -RFR model 

Feature PC1 PC2 PC3 PC4 PC5
P1 0,028 -0,328 0,596 -0,058 -0,077
DP12 0,437 -0,101 0,041 -0,202 0,272
DP32 0,323 0,372 0,197 -0,200 0,064
DP13 0,443 -0,111 0,049 -0,127 0,234
beta -0,370 0,064 0,069 -0,262 0,711
PRR 0,081 0,547 0,281 0,165 0,025
RPR 0,046 0,558 0,247 -0,166 -0,166
DR 0,028 -0,328 0,596 -0,056 -0,081
d -0,431 0,073 0,186 -0,077 0,324
D -0,382 0,067 0,227 0,182 -0,279
PLR 0,170 0,017 0,125 0,857 0,372
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However, it is important to acknowledge the limitations of using PCA for feature 
reduction. Although PCA is effective at capturing the majority of variance in the data, it may 
overlook complex interactions between the original features that could be significant for the 
model. To address this, future work will focus on using Recursive Feature Elimination with 
Cross-Validation (RFECV) to systematically evaluate different combinations of features, 
aiming to enhance model performance. Additionally, investigate how varying the fractions 
of the dataset used for the training can further improve the model's accuracy. 

4.3.4 Case 4: Fractional Data Reduction, Clustering and Feature 
Elimination with Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) and Recursive Feature Elimination with 
Cross Validation (RFECV) in Random Forest Regression 

This case evaluates the effect of reducing data points and applying Recursive Feature 
Elimination with Cross-Validation (RFECV) (Section 2.2.3.1 )for feature selection on the 
model's predictive performance. The aim is to explore the relationship between data 
quantity, feature selection, and model accuracy, and enhance predictive capabilities. 

 
The process begins by applying the Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) (Section 2.2.2.3) algorithm to clean the dataset, removing noise and 
outliers, and identifying clusters. This leads to a refined set of data points, which is then used 
to create different fractions of the dataset (2%, 10%, 25%, 50%, 75%, and 100%). These 
fractions are sampled from each identified cluster to assess the impact of dataset size on 
model performance. The Random Forest Regressor is then trained on each subset, initially 
using all 11 features (see Figure 3.9) described in the study. RFECV (Section 2.2.3.1) is 
employed to systematically identify and retain the most influential features, thereby 
optimising model performance by minimising the Root Mean Squared Error (RMSE) 
(Equation (3.10). The flow diagram depicting this process is shown in Figure 4.11. 
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20 %

Scale Data

Data preprocessing

Training Set 80%

Data Reduction (DBSCAN)
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Feature  selection (RFECV)
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Prediction (Steam Quality )
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Fractional Data Reduction (2%,10%, 25%, 50%, 75%)

 

Figure 4.11 Flow diagram Case 4: Fractional Data Reduction, Clustering and 
Feature Elimination with Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) and Recursive Feature Elimination with Cross 
Validation (RFECV) in Random Forest Regression 

The initial step involved combining datasets from phase 1 and phase 2 experiments. 
This combined dataset was used for further analysis. The selected features for clustering 
included PRR, RPR, PLR, P1, DP12, DP13, DP32, beta, D, d, and DR. DBSCAN was 
applied to remove noise and outliers from the dataset, ensuring a cleaner and more reliable 
set of data points for analysis. DBSCAN was applied to the scaled features, identifying 18 
clusters and 43 noise points. The distribution of data points across these clusters is shown in 
the following Table 4.6 

Table 4.6 Fraction and points in each cluster 

 
 

2% 387 Points
10% 1942 Points
25% 4857 Points
50% 9712 Points
75% 14564 Points

100% 19421 Points
Noise 43 Points

Total Data Set 19464 Points

18 Clusters
DBSCAN method
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Different fractions (2%, 10%, 25%, 50%, 75%, and 100%) of data points from each 
cluster were sampled to evaluate their impact on model performance. RFECV (Section 
2.2.3.1) was implemented to evaluate different combinations of features systematically and 
identify the optimal subset that contributes to the highest model accuracy. A Random Forest 
regression (Section 2.2.1.1) model was trained using the selected features, with 
hyperparameter tuning applied to optimise performance. 

 Figure 4.12 and Figure 4.13 illustrate the comparison of all the data points (phase 1 
and 2 points) with the 2% and 10% sampled data. The decision to sample 2% of the data 
was based on the approach taken by (Juliusson et al., 2023), where the data was similarly 
reduced to approximately 2%. These visualisations show that even with a small percentage 
of sampled data, the general trends and patterns are preserved, allowing for effective model 
training.  

 

Figure 4.12 Enthalpy vs flow rate - 2% 
sampled Data 

Figure 4.13 Enthalpy vs flow rate - 
10% sampled Data 

 
The results indicate that reducing the data to as little as 25% still maintains a high level 

of predictive accuracy, as evidenced by the RMSE result. This finding highlights the 
efficiency of DBSCAN in noise reduction and the robustness of the Random Forest model 
when combined with RFECV for feature selection. The ability to achieve comparable 
performance with reduced data points suggests potential for faster training times and lower 
computational costs. 

The RFECV method, combined with Random Forest Regression, demonstrates the 
potential to optimise feature selection and improve predictive accuracy significantly. The 
results for different data fractions are summarised in Table 4.7. 

Table 4.7 Results for Case 4 

 
 
The study demonstrates that feature importance varies across different data fractions, 

indicating that feature relevance can change with dataset size. However, features such as 
RPR, PLR, P1, DP12, and d consistently appeared among the top selected, underscoring 

Fraction Optimal Features Test  RMSE
2% [PRR, RPR, PLR, DP32, d, DR] 0,0280

10% [PRR, RPR, PLR, P1, DP12, DP32, d, DR 0,0316
25% [RPR, PLR, P1, DP12, d] 0,0187
50% [RPR, PLR, P1, DP12, DP32, d, DR] 0,0137
75% [RPR, PLR, P1, DP13, d] 0,0117
100% [PRR, RPR, PLR, P1, DP32, d, DR] 0,0122
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their significance in predicting steam quality. As the dataset size increased, the RMSE 
decreased, highlighting the importance of larger datasets for achieving better predictive 
accuracy. The lowest RMSE of 0.0117 was achieved with a 75% dataset fraction using the 
features [RPR, PLR, P1, DP13, d]. The effectiveness of RFECV was evident in its ability to 
identify the most relevant features, improving model accuracy by minimising noise and 
irrelevant variables. Nonetheless, RFECV has limitations as it does not account for 
interactions between features, potentially missing combinations that are collectively 
significant. Overall, this study illustrates the value of systematic feature selection and 
varying dataset sizes in developing robust machine-learning models, underscoring the 
potential of these techniques in predicting geothermal fluid properties and providing a basis 
for future research and industrial applications. 

4.3.5 Summary  

Table 4.8 presents a summary of all the machine-learning models evaluated in this 
study, focusing on predicting steam quality. The study applied various methodologies, 
including clustering, feature selection, and regression techniques, to identify the most 
effective model configurations. 

 
The best-performing model was Case 4: Fractional Data Reduction, Clustering, and 

Feature Elimination with DBSCAN and RFECV in Random Forest Regression. Using a 75% 
dataset fraction with the features [RPR, PLR, P1, DP13, d], this model achieved the lowest 
RMSE of 0.0117. This result highlights the success of advanced feature selection and data 
reduction strategies. 

 
 The most significant features across different models were RPR, PLR, P1, DP12, and 

d, which consistently proved crucial in enhancing predictive accuracy. Looking at the data 
Reduction Impact, both K-means and Grid-based clustering methods highlighted the 
importance of representative data sampling, with K-means generally showing better 
adaptability. In dimensionality reduction, PCA, when paired with DBSCAN, effectively 
captured essential variance, although it may overlook complex interactions between 
features. 
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Table 4.8 Summary of results from machine learning models 

 
 
To implement this model in real future applications, the process starts by placing a 
Differential Pressure (DP) orifice plate meter in the flow line where the two-phase geothermal 
fluid is present. The algorithm then reads the data from these meters and estimates the steam 
quality using the model developed. With this estimated steam quality, enthalpy and the total 
flow rate of the geothermal fluid can be computed. Finally, the total available power is 
calculated using the formula: 
 
 
 
Where enthalpy h and the total flow rate ṁ are determined from the predicted steam quality, 
this method can give an estimation of the geothermal well output. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case description RMSE Brief Summary

Baseline: K-means - SelectKBest - RFR by Juliusson et al. 
(2023)

0.030
Phase 1 data, K-means for clustering for data 
reduction and SelectKBest for feature selection, 
with RFR.

Baseline: Grid - SelectKBest - RFR by Juliusson et al. 
(2023)

0.075
Phase 1 data, a grid-based method for clustering for 
data reduction, followed by feature selection with 
SelectKBest and RFR.

Case 1: Targeted Feature Selection Using K-means  in 
Random Forest Regression

0.036
All data (phase 1 and 2) K-means for clustering for 
data reduction, specific features and RFR.

Case 1: Targeted Feature Selection Using Grid Methods in 
Random Forest Regression

0.054
All data (phase 1 and 2) Grid method for clustering 
for data reduction, specific features and RFR.

Case 2: SelectKBest for All Features Using K-means in 
Random Forest Regression

0.0123
All data (phase 1 and 2) ,K-means for clustering , 
modifications in feature selection led to a significant 
reduction in RMSE, and RFR.

Case 3: Dimensionality Reduction and Clustering with 
DBSCAN and PCA in Random Forest Regression

0.0134
All data (phase 1 and 2) , used DBSCAN for 
clustering and removing noise and PCA for 
dimensionality reduction, with RFR.

Case 4: Fractional Data Reduction, Clustering, and Feature 
Elimination with DBSCAN and RFECV in RFR

0.0117
All data (phase 1 and 2) , combined DBSCAN with 
RFECV for feature selection and varied dataset sizes 
and RFR.

𝑃௧ ൌ ℎ𝑚ሶ (4.1) 
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Chapter 5 

5Conclusion and Recommendations 

The objective of this thesis was to develop and evaluate machine learning models for 
predicting steam quality in flow from geothermal wells. The study applied various data 
preprocessing, feature selection, and regression techniques to achieve accurate predictions. 
The findings and insights obtained from this research provide valuable contributions to the 
field of geothermal energy. The following were the key findings: 

 The model using DBSCAN for noise reduction, RFECV for feature selection, 
and Random Forest Regression (RFR) for prediction achieved an RMSE of 
0.011 using five key features: [RPR, PLR, DP13, P1, d]. 

 Applying RFECV and RFR to the 75% sampled dataset resulted in an RMSE 
of 0.012 using all available features, demonstrating high predictive accuracy 
even with reduced data. 

 Using Principal Component Analysis (PCA) for dimensionality reduction and 
RFR for prediction achieved an RMSE of 0.013 using the top 5 principal 
components, indicating PCA's effectiveness in compressing feature 
information while maintaining predictive performance. 

 DBSCAN effectively reduced noise in the dataset, improving model accuracy 
and robustness. 

 Principal Component Analysis (PCA) was effective in compressing feature 
information, allowing for efficient and accurate predictions with fewer 
features. 

 Larger datasets generally led to better model performance, as evidenced by 
lower RMSE values. This underscores the importance of utilising as much 
relevant data as possible for training machine learning models. 

 Using more than five features generally improves prediction accuracy, 
highlighting the importance of feature selection in building robust models. 
 

To enhance the robustness and generalizability of the models, future research should 
focus on testing them across diverse geothermal datasets from different fields. This approach 
will ensure that the models are not overfitted to the specific dataset used in this study and 
can be reliably applied to other contexts. 

Integrating traditional methods, which are typically conducted a couple of times a 
year, into the model for continuous calibration could greatly improve accuracy over time. 
By updating the model with fresh data each year, its predictive performance can be refined 
and enhanced, providing more precise and reliable measurements. 

The demand for real-time measurements is not exclusive to Iceland's geothermal 
fields. This model has the potential to be adapted and implemented in other countries with 
high-temperature geothermal resources. Conducting similar studies in different geothermal 
fields worldwide would provide valuable insights into the factors influencing the model's 
performance, leading to broader applications and advancements in geothermal energy 
management. 
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